
Quantum Circuit Decomposition

Adrien Ecoffet

Context: I wrote this paper as a final project for the Ma-
trix Theory course of the Johns Hopkins University mas-
ter’s in Applied and Computational Mathematics. I think
it provides a more intuitive introduction to quantum cir-
cuit decomposition than the other works I am familiar with,
so I am putting it online with approval from the professor.
I have eliminated most references to the course textbook,
Shores [1], but it may still be useful as a reference since I
sometimes assume familiarity with the course material.

Abstract

Quantum computing uses quantum mechanical
properties of matter to perform operations un-
available to classical computers. Two impor-
tant representations for an n-qubit quantum algo-
rithm are the matrix representation, which repre-
sents the quantum state as a complex unit vec-
tor and the algorithm as a unitary matrix, and the
circuit representation, which represents the algo-
rithm as a circuit of quantum gates. The ma-
trix representation is mathematically useful, but
the circuit representation is closer to what can be
implemented on quantum hardware, so it is im-
portant to be able to convert between the two.
While going from gates to matrices is trivially
done by multiplying the matrix representations
of the gates, going from a unitary to a quantum
circuit is the subject of a significant field of study
known as quantum circuit decomposition. Here,
I present the decomposition algorithm presented
by Cybenko [2]. After a brief introduction to
quantum computing and the two representations,
I show how the QR decomposition can be imple-
mented using Givens operations, and how apply-
ing it to unitary matrices results in a product of
simple unitary matrices. I then explain the struc-
ture of quantum gate matrices, and show that al-
though Givens operations do not always match
it, they can be decomposed into a product of uni-
tary matrices that do. I finally reduce the set of
necessary gates to a small universal gate set.

1. Introduction
Quantum computing promises to greatly speed up compu-
tations by harnessing the quantum mechanical properties of
matter. Shor’s quantum factorization algorithm [3] can fac-
torize large integers in polynomial time, a fact which could
be used to break many common encryption schemes [4].
Grover’s quantum search algorithm can perform an exhaus-
tive search in O(

√
N) operations rather than the O(N) re-

quired on classical computers [5]. Further, quantum com-
puters could efficiently simulate any quantum-mechanical
system [6], so that the properties of new drugs or materials
could be simulated without the compounds needing to be
synthesized and tested, thus greatly accelerating progress
in medicine, material science, and many other fields [4].

Practically implementing quantum computers is a subject
of intense study. One of the difficulties involved is the
gap between the mathematical representation of quantum
algorithms and representations that are practically imple-
mentable. Mathematically, a quantum algorithm can be
represented as a large unitary matrix, and running the algo-
rithm is equivalent to multiplying that matrix with an input
vector. There is often no obvious way to implement such
large operations in hardware, however, so it is necessary to
decompose the algorithm into a series of elementary oper-
ations called quantum gates, producing an implementable
quantum circuit. Here, I present the decomposition algo-
rithm described by Cybenko [2], with further details com-
ing mainly from Barenco et al. [7]. Much of the back-
ground on quantum computing comes from Matuschak and
Nielsen [4], which I highly recommend as an introduction.

2. Background on Quantum Computing
Similar to bits in classical computing, quantum computing
uses qubits (often also called “bits” when there is no ambi-
guity [7]), whose measurable values can be 0 or 1. Qubits
are typically implemented as particles (e.g. an atom or pho-
ton) which can be in one of two states, one of which is taken
as representing 0 and the other 1. While the state of a clas-
sical computer is always a well defined sequence of bits
such as 01 or 11, the state of a quantum computer can be a
superposition of multiple sequences of bits, so that it could
be in states 01 and 11 “at the same time.”



 0√
0.3 + i

√
0.06

0
0.8

 00
01
10
11

Figure 1: An amplitude vector (the values on the right are
the states each amplitude corresponds to).

What does it mean for a quantum computer to be in state 01
and 11 at the same time? For one thing, it affects the out-
come of measurement: we could be in a situation where if
we tried to measure our state, we would have a 36% chance
of measuring 01 and a 64% chance of measuring 11. If
we happened to measure, say, 01, and measured again, we
would keep measuring 01 from then on.

From the description above, it may seem that the quantum
computer was in state 01 all along and we just weren’t
aware of it, so that 36% and 64% were just representing
our uncertainty. A key point of quantum mechanics, how-
ever, is that we really can be in a distinct state that had a
36% chance of being measured as 01 and 64% chance of
being measured as 11, and that it was the act of measuring
that pushed it to the state that is always 01.

With the probabilities described earlier, it seems that we
were “more strongly” in state 11 than in state 01, as the
former had a higher probability of being measured. In
quantum computing, we would say that the state 11 had
a larger amplitude than the state 01. The amplitude of a
state is not merely its probability of measurement, how-
ever. Rather, it is a complex number associated with the
state. You can obtain the probability of measuring a state
by squaring the absolute value of its amplitude (the abso-
lute value of a + bi is |a + bi| =

√
a2 + b2), so that if the

amplitude of a state is z, the probability of measuring that
state is |z|2. So if state 01 has a 36% chance of being mea-
sured, its amplitude could be 0.6, or 0.6i, or

√
0.3+i

√
0.06,

or infinitely many other values. While each of these am-
plitudes produce an equal probability of being measured,
they are affected differently by quantum operations, which
is partly why there is a difference between being in a super-
position of state 01 and 11 and not knowing whether we
are in state 01 or state 11.

We can now come up with a mathematical representation of
the quantum state: we can view it as a vector of amplitudes
by enumerating all possible states (e.g. 00, 01, 10 and 11
in a 2 qubit system) and putting the amplitude of each state
in a vector. Fig. 1 shows a possible vector representation
of the situation we have been discussing. Because the vec-
tor contains all possible combinations of bits, an n-qubit
system will have an amplitude vector with 2n elements.

The fact that the square of the absolute value of the am-

plitude corresponds to the probability of measurement of a
state has an important consequence: the sum of the prob-
abilities of measuring each state must be 1, so if v is an
amplitude vector, we must have

∑
i |vi|2 = 1. We recog-

nize the left hand side as the square of the standard complex
vector norm, so we must have ∥v∥ = 1, i.e. any amplitude
vector is a (complex) unit vector.

How do we manipulate a quantum state? A fundamental
postulate of quantum mechanics is that the evolution of
any quantum state can be represented by a unitary trans-
formation of that state’s amplitude vector [8]. Hence, any
operation that we might take on state v will lead to a new
state Uv, where U is a unitary matrix. This is consistent
with our observation that any amplitude vector has to be a
unit vector: we would hope that Uv is also a valid ampli-
tude vector, i.e. that it is also a unit vector, and if U is a
unitary matrix, then ∥Uv∥ = ∥v∥ for all v, so this criteria
is met. Indeed, it can be shown that unitary matrices not
only preserve norm, but that all norm-preserving matrices
are unitary [4], so if the evolution of a quantum state has to
be a linear transformation (which is out of the scope of this
project to prove), it makes sense that it would be described
by a unitary matrix.

3. Quantum Gates and Quantum Circuits
While we can represent any quantum algorithm as a single
unitary matrix, this representation is not always practical.
In particular, it is not obvious how to implement an arbi-
trary matrix in hardware: a qubit is usually a small particle
like a photon or an atom, and while it is possible to manip-
ulate one qubit at a time or sometimes two qubits at once,
it is often not clear how to make dozens of qubits interact
in the highly specific way represented by a given matrix.

To address this problem, we introduce quantum gates.
These are simple quantum operations that can be chained
to produce more complex operations, similar to logic gates
in classical computing. Unlike large quantum algorithms
which can act on many qubits at once in arbitrary ways,
quantum gates can either act on one qubit at a time or can
only act on multiple qubits in specific ways. Since quantum
gates are themselves quantum operations, they have a uni-
tary matrix representation, and chaining of quantum gates
corresponds to multiplying those matrices.

If a set of quantum gates can be used to implement any
quantum algorithm, it is called universal. Our goal in this
paper is to define a universal set of gates and show how any
unitary matrix can be decomposed into that set.

We often represent quantum gates using quantum circuit
notation. Fig. 2a shows the simplest quantum circuit with
3 qubits: one which does nothing. The horizontal axis
shows the passage of time, and each line represents a qubit.

2



(a) A quantum circuit
that does nothing.

U

(b) A quantum circuit that ap-
plies gate U to the second
qubit.

U

X

(c) A circuit with controlled U and X gates.

Figure 2: Some simple quantum circuits.

Since time flows from left to right, but when multiplying
Un · · ·U1v, the rightmost matrix is applied first to the in-
put v, the order of gates is reversed when going between
the circuit and matrix representations. In Fig. 2a, the lines
stay unmodified throughout, and so the qubits are unaltered
by the end of the circuit.

3.1. Single Qubit Gates

The simplest type of quantum gate is a single qubit gate,
which corresponds to an operation that only affects a par-
ticular qubit. Fig 2b shows a quantum circuit in which the
gate U is applied to the second qubit. Being a single-qubit
operation, it must be possible to represent U as a 2×2 uni-

tary matrix, U =
[
a b
c d

]
. However, when we apply U to the

whole 3-qubit system, we must make it so that U is applied
to the second qubit in all places, giving us:

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

U =



a 0 b 0 0 0 0 0
0 a 0 b 0 0 0 0
c 0 d 0 0 0 0 0
0 c 0 d 0 0 0 0
0 0 0 0 a 0 b 0
0 0 0 0 0 a 0 b
0 0 0 0 c 0 d 0
0 0 0 0 0 c 0 d



000
001
010
011
100
101
110
111

Notice how the non-zero entries are precisely those where
either no qubit has changed between the rows and the
columns, or only the second qubit has changed: this is be-
cause our gate only applies to the second qubit.

An important single-qubit gate is the X gate, X =
[
0 1
1 0

]
,

also called the NOT gate because if the amplitude of the
qubit is fully on 0 or 1, then it flips it to 1 or 0, respec-
tively. Other important single-qubit gates [7] are the rota-

tion around y, Ry(θ) =

[
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

]
, the rotation

around z, Rz(α) =

[
eiα/2 0
0 e−iα/2

]
and the phase-shift

gate Ph(ϕ) =

[
eiϕ 0
0 eiϕ

]
. We will see in Sec. 4.4 that the

phase-shift and rotation gates can be used to represent any
single-qubit gate, so they will be part of our universal set.

3.2. Controlled Gates

The only type of multi-qubit gates we will consider are the
controlled gates. A controlled gate is the same as a single-
qubit gate in that it only affects a single bit, but whether it
affects that bit at all is controlled by the value of another bit.
In Fig. 2c, we see a U gate being applied to the second bit
with the first bit as control. This means that the U gate will
only be applied to the second bit in states where the first bit
is 1, whereas in states where the first bit is 0, the second bit
will not change. In matrix terms, this corresponds to:

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

U =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 a 0 b 0
0 0 0 0 0 a 0 b
0 0 0 0 c 0 d 0
0 0 0 0 0 c 0 d



000
001
010
011
100
101
110
111

Notice that the corner in which the first bit is 0 is an identity
matrix, and the structure from the earlier matrix U is only
present where the first qubit is 1.

It is possible to have multiple control bits, which will fur-
ther increase the number of places in which the U gate is re-
placed with the identity matrix. The second gate in Fig. 2c
is shown with two control bits.

While the target gate can be anything, our a goal in this
paper will be to restrict our usage of controlled gates to
only the controlled-X gate with a single control bit. This
gate is often called the controlled-NOT, or CNOT gate, and
is the only multi-qubit gate included in our universal set.

4. Quantum Circuit Decomposition
We have seen that any quantum algorithm can be repre-
sented as a unitary matrix, but that practical implementa-
tions are restricted to a particular set of quantum gates. We
must therefore find a way to decompose any 2n×2n unitary
matrix into a product of simple quantum gates.

We will proceed as follows: first, we will use QR decompo-
sition with the Givens operation to decompose the unitary
matrix into a product of simpler unitary matrices. Then,

3



U =

[
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

]
→ G31U =

[
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

]
→

G21G31U =

[
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

]
→ G32G21G31U =

[
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

]

Figure 3: QR decomposition by Givens operations in the
3 × 3 case. The ∗ symbol represents a possibly non-zero
value, the next subvector to have its bottom entry zeroed
out is highlighted.

we will show that these simpler matrices can be decom-
posed into a circuit of single-qubit gates and multi-qubit
controlled gates. Then we will show that any multi-qubit
controlled gate can be decomposed into a circuit of gates
controlled by a single qubit. Finally, we will show that
any single-qubit gate can be decomposed into a circuit of
phase-shift and rotation gates, and that any gate controlled
by a single qubit can be decomposed into a circuit of single-
qubit gates and CNOT gates, leaving us with a universal set
consisting only of phase-shift, rotation, and CNOT gates.

4.1. QR Decomposition with Givens Operations

The QR factorization factorizes a full rank square matrix
into U = QR where Q is orthogonal and R is upper tri-
angular. In practice, we can build Q by successively ze-
roing out entries of U until the whole lower triangle is ze-
roed out, producing R. In our case, each zeroing iteration
will be produced by a matrix that Cybenko calls a “quan-
tum Givens operation”, which is the generalization of the
Givens rotation to the complex numbers. The Givens op-
erations will be designed to be unitary, and R will also be
unitary: U = QR, so R = Q∗U , where both Q∗ and U are
unitary, so R is the product of two unitaries, and therefore
unitary.1

To perform the QR factorization, we successively pre-
multiply U by a matrix Gij that will zero out entry (i, j),
in the order illustrated in Fig. 3 (from bottom to top – up to
the diagonal – and left to right). We want Gij to have the
following block form:

Gij =

[
I 0 0
0 G 0
0 0 I

]
,

where G is a 2 × 2 matrix placed in such a way that it

will multiply the vector
[
ui−1,j
uij

]
(i.e. the entry we want

to zero out as well as the one above it) when we do the
multiplication GijU . In Fig. 3, at each step the section of
the matrix we want to affect with our next G is highlighted

1See Module 8 video “Unitary Matrices.”

(G also multiplies other sections, but we will show that this
never unzeros out previously zeroed entries).

If the target subvector is of the form v =
[
a
b

]
, we want our

matrix G to be such that

Gv =
[
α β
γ δ

] [
a
b

]
=

[√
|a|2 + |b|2

0

]
.

The lower element of Gv is zero because we are trying to
zero out that entry, while the top element is

√
|a|2 + |b|2

because we need G to be unitary. As we saw in Sec. 2,
unitary matrices are norm-preserving, so we must have
∥Gv∥ = ∥v∥ =

√
|a|2 + |b|2. Cybenko proposes G =

1√
|a|2+|b|2

[
a b
b −a

]
, which meets our our requirements of

being unitary (GG∗ = I) and taking v to the required Gv,
as can be verified by matrix multiplication.

Thus each matrix Gij is unitary (because the G block is
unitary) and will zero out the (i, j)th entry. It remains to
be shown that, if we zero out entries in the order spec-
ified earlier, we will never unzero previously zeroed en-
tries. We proceed by induction starting from the case
where we have successfully zeroed out the bottom left en-
try, and show that at each subsequent step, we are not un-
zeroing any previously intentionally zeroed entry. Sup-
pose the matrix is in a valid intermediate state and en-
try (i, j) has been zeroed out, then the column containing
(i, j) is of the form (∗, . . . , ∗, 0, 0, . . .), where the ∗ are
possibly nonzero entries and the first zero is entry (i, j).
Now, suppose we are multiplying by a Givens matrix Gkl.
There are three possibilities for the row of Gkl that will
be multiplied with our column to give the new (i, j)th en-
try: a) (0, . . . , 0, 1, 0, . . .), b) (0, . . . , ∗, ∗, 0, . . .), or c)
(0, . . . , 0, ∗, ∗, 0, . . .), where in each case the boxed entries
match the ones from the column. Since all other entries of
the row are zero, we only need to consider the dot product
of the boxed entries. In cases a) and c), the result will be 0
since the non-zero entries in the row match zero entries in
the column, and vice-versa. Case b) is where order comes
in: the dot product can only be non-zero if the ∗ entry in the
column is non-zero. This only happens if we are attempt-
ing to zero out an entry in row i. However, our ordering is
such that if we ever attempt to zero out entry (i, l) where
l > j, then we must have zeroed out the entry (i − 1, j)
beforehand (if we hadn’t, then (i− 1, j) is on the diagonal,
but then our ordering is such that we will never zero out
entries in row i again), so the ∗ entry in the boxed section
will always be 0 in case b), and the result will also be 0.

Thus for any unitary U , we can write Gn,n−1 . . . Gn1U =
R where the G... as well as R are unitary. This gives us the
QR decomposition U = QR where Q = G∗

n1 . . . G
∗
n,n−1.

4



0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 a b
0 0 0 0 0 0 c d



000
001
010
011
100
101
110
111

(a) Matrix representation.

V

G

(b) Quantum cir-
cuit.

Figure 4: A simple Givens operation where G covers only
one the last qubit and all other qubits are 1.

4.2. Decomposition into Multi-Bit Controlled Gates

We now have a decomposition of U into simpler matri-
ces, which we must further decompose into valid quantum
gates. For now, we consider all single-qubit gates as well
as controlled gates controlled by any number of qubits to
be valid gates. Later sections will further restrict this set.

4.2.1. DECOMPOSITION OF Q

In our QR decomposition, Q can be written as a product
of inverses of Givens matrices. An inverse Givens matrix
follows the same block form as the original matrix but with
G∗ taking the place of G, so it is also a Givens matrix.

Are Givens matrices already valid quantum gates? Unfor-
tunately, that depends on the location of the G block. In the
ideal case, the G block is found all the way at the bottom
right of the matrix (Fig. 4a). In that case, we can tell from
Sec. 3.2 that it follows the form of a controlled G gate on
the last qubit, with all other qubits as controls. The corre-
sponding circuit form is shown in Fig. 4b. We will use V
to refer to this ideal configuration of a Givens matrix.

Now, suppose we have a Givens matrix W , which has its
G block in a different location than the bottom right. Our
strategy to apply W will be to move the G block in V to
its location in W using valid quantum gates (our procedure
might require that V have a different ordering of the ele-
ments in its G block than W , but the appropriate ordering
will be easy to find). We can divide this into two steps:
swapping the last two columns of V with the columns of
W containing its G block, and swapping the last two rows
of V with the rows of W containing the G block. Swap-
ping the rows of a matrix can be done by multiplying on
the left with a permutation matrix, and that multiplying on
the right will swap the columns. Indeed, since the G block
of W is always on the diagonal, the indices of the target
rows and columns are the same, so we can use the same

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 a b 0 0 0 0
0 0 c d 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



000
001
010
011
100
101
110
111

(a) Matrix representation.

V

X X

G

(b) The corresponding quantum circuit.

Figure 5: Case 1: A Givens operation where G only covers
the last qubit flipping, but the first qubit is 0.

permutation matrix on both sides.

We are thus looking for a permutation P such that W =
PV P . However, not every single permutation is a valid
quantum gate, so we will have to build up P using a circuit
of valid gates. To do so, we will exclusively use the X gate
(both in controlled and uncontrolled form), so that we can
write W = X1 . . . XnV Xn . . . X1. It is easily shown that
any Xi gate is its own inverse, so we can also write V =
Xn . . . X1WX1 . . . X1. Solving this latter problem is more
intuitive to explain, so this is the approach we will take here
(i.e. rather going from matrix V to W , we will show how
to take any Givens matrix W one step closer to V ), and
we can later implement the W = X1 . . . XnV Xn . . . X1

circuit by reversing the order of the circuit on each side.

There are two cases to consider when taking W to V . In
case 1, the G block is in a location where one bit is al-
ways 0 (Fig. 5a). As we can see in Fig. 4a, in V , the
G block overlaps only places where every bit except the
last one is 1. Thus we want a permutation matrix that per-
mutes the rows/columns where the offending bit is 0 with
the rows/columns where that bit is 1. This is exactly what
an uncontrolled X gate on the offending bit does, and it is
thus the gate we use here (Fig. 5b).

In case 2, the G block spans a bit flip that is not the last
bit (Fig. 6a). As we have seen, in V , only the last bit flips.
In this case, we want to swap entries of W so that all the
entries of G move to the same value of the offending bit (if
we happen to move G to a location where the offending bit

5



0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 a b 0
0 0 0 0 0 c d 0
0 0 0 0 0 0 0 1



000
001
010
011
100
101
110
111

(a) Matrix representation.

V

X X

G

(b) The corresponding quantum circuit.

Figure 6: Case 2: A Givens operation where G covers both
the second and third qubit flipping.

is 0, we can fix this using case 1). To do so, we observe
that the last bit will always also flip across G, so we can
use it as a pivot of sorts by using a controlled X gate on the
offending bit, controlled by the last bit. This will move all
entries of G corresponding to one value of the offending bit
to the other value, so that G no longer spans that bit swap.

With this procedure, any offending bit can be made non-
offending with at most one application of case 2 and case
1, so we can take any Givens matrix W to V by following
those two cases until no offending bits are left. Reversing
the permutation circuit on each side allows us to implement
W using V , as depicted in Fig. 5b and 6b.

4.2.2. DECOMPOSITION OF R

Since R is unitary and upper triangular, it must be diag-
onal, which we prove now: R’s diagonal entries are non-
zero (see, e.g. [1] Theorem 4.11), and since R is unitary,
RR∗ = I , so the non-diagonal entries of RR∗ are zero.
Now, consider entry (1, n) of RR∗. Its value is given by∑

k=1 r1krnk, but since R is upper triangular, the entries
rnk are 0 for all k < n, so only rnn is non-zero, mak-
ing the (1, n)th entry of RR∗ equal to r1nrnn. Now, rnn
is non-zero since it is on the diagonal, and unless n = 1
(in which case R is trivially diagonal), the (1, n)th entry of
RR∗ is 0, so we must have r1n = 0. Now that we know
this, the same argument shows that the (1, n−1)th entry of
RR∗ is equal to r1,n−1rn−1,n−1, and since rn−1,n−1 ̸= 0,
we must have r1,n−1 = 0 if n − 1 ̸= 1. Continuing this
argument until (1, 2), we find that only entry (1, 1) is non-

zero in the first row. The same argument can be used to
show that only entry (2, 2) is non-zero in the second row,
and so on, showing that R is diagonal. Since R is diagonal,
we can use the method in the previous section to decom-
pose R into quantum gates by targeting each 2 × 2 block
on the diagonal in turn as if it was a G matrix.

4.3. Reducing Multi-Qubit Controlled Gates

We have now converted our unitary matrix into a quantum
circuit of well-defined quantum gates. Here, we reduce
controlled gates with multiple control bits to gates with at
most one control bit.

We take a recursive approach: if a gate has n > 1 control
bits, we will show that we can decompose it into a circuit of
gates with at most n− 1 control bits. If n− 1 > 1, we can
use the same method to get gates with at most n−2 control
bits, and so on until all gates have at most one control bit.

This reduction requires a key observation: suppose we
are trying to decompose a multi-control bit gate V (e.g.
Fig 7a). Since V is a unitary matrix, it must have a square
root W , i.e. a matrix such that V = W 2. We show this
by observing that since V is unitary, it can be written as
V = PDP ∗ (Noble and Daniel (8.6)), where D is di-
agonal and P is unitary. If we take D′ to be a matrix
with square roots of the entries of D on its diagonal (all
of which exist, since we are working with complex num-
bers), then D = D′2, so we can write W = PD′P ∗, and
so WW = PD′P ∗PD′P ∗ = PD′2P ∗ = PDP ∗ = V .

W is unitary (and can thus be used as a gate): from the
diagonalization of V and the fact that it is unitary, we have
V V ∗ = PDP ∗PD∗P ∗ = PDD∗P ∗ = I , which we can
rearrange into DD∗ = I . Since D is diagonal, the entries
δii of D are such that δiiδii = |δii| = 1. This implies that
the entries δ′ii of D′ are also such that |δ′ii| = 1 since 1 =
|δii| = |δ′2ii | = |δ′ii|2. Thus D′D′∗ = I , so W = PD′P ∗ is
a product of unitary matrices and therefore unitary.

We now show how to take an n-bit controlled gate (Fig. 7a)
to a circuit of gates with at most n − 1 control bits. We
create a circuit such that, if the n control bits are all 1, we
will apply W twice, which is V since WW = V , but if any
of the control bits are 0, we will apply W and W ∗, which
does nothing since WW ∗ = W ∗W = I . The control bits
are numbered 1, 2, . . . , n, and bit n will be our “special”
control bit. We follow the following steps (see Fig. 7):

1. Apply W controlled with bit n to the target bit.
2. Apply X controlled with bits 1, . . . , n− 1 to bit n.
3. Apply W ∗ controlled with bit n to the target bit.
4. Apply X controlled with bits 1, . . . , n−1 to bit n (this

brings bit n back to its original state).
5. Apply W controlled with bits 1, . . . , n− 1 (excluding

bit n) to the target bit.

6



V

(a) The original controlled gate V .

0

0 X X

W W ∗ W = I

(b) Bits 1, . . . , n− 1 contain a 0, bit n is 0.

0

1 X X

W W ∗ W = I

(c) Bits 1, . . . , n− 1 contain a 0, bit n is 1.

1

0 X X

W W ∗ W = I

(d) Bits 1, . . . , n− 1 are 1, bit n is 0.

1

1 X X

W W ∗ W = V

(e) Bits 1, . . . , n are 1.

Figure 7: The pathways taken in different cases when re-
ducing the number of control bits. In each case, the high-
lighted gates are the ones that are active due to the control
bits, while the inactive gates are grayed out.

Rz(β) Ry(θ) Rz(α) Ph(δ)

Figure 8: Decomposition of any single qubit gate.

To see how this works, consider the four possible cases de-
pending on whether bit n is 0 or 1 and bits 0, . . . , n− 1 are
all 1s or contain a 0 (step 4 always brings bit n back to its
initial state, so we don’t explain it each time):

• Bit n is 0 and bits 0, . . . , n − 1 contain a 0 (Fig. 7b):
we don’t apply W at step 1. Bit n is unchanged at step
2, so we don’t apply W ∗ at step 3, and we don’t apply
W at step 5. Thus nothing happens to the target.

• Bit n is 0 but bits 0, . . . , n − 1 are all 1 (Fig. 7c): we
don’t apply W at step 1. Bit n becomes 1 at step 2, so
we apply W ∗ at step 3. At step 5, we apply W . The
net result is to apply WW ∗ = I , which does nothing.

• Bit n is 1 but bits 0, . . . , n − 1 contain a 0 (Fig. 7d):
we apply W at step 1. Bit n doesn’t change at step 2,
so we apply W ∗ at step 3. We don’t apply W at step
5. The result is W ∗W = I , which does nothing.

• All bits 1, . . . , n are 1 (Fig. 7e): we apply W at step
1. Bit n becomes 0 at step 2, so we don’t apply W ∗

at step 3. At step 5, we apply W . The net result is to
apply WW = V to the target.

Applying this approach recursively, we can reduce any
multi-controlled gate to a circuit of single-controlled gates.

4.4. Reducing Single-Qubit Gates

We now show how to decompose any 2× 2 unitary matrix
into a product of phase-shift and rotation gates. First, note
that any 2×2 unitary can be written in the following form2:[

ei(δ+α/2+β/2) cos θ/2 ei(δ+α/2−β/2) sin θ/2
−ei(δ−α/2+β/2) sin θ/2 ei(δ−α/2−β/2) cos θ/2

]
.

This can easily be rewritten as:

Part 1︷ ︸︸ ︷[
eiδ 0
0 eiδ

] Part 2︷ ︸︸ ︷[
eiα/2 0
0 e−iα/2

][
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

][
eiβ/2 0
0 e−iβ/2

]
(1)

The distinction between Part 1 and Part 2 matrices will be
relevant in the next section. For now, we recognize the first
matrix as being a phase-shift gate Ph(δ), the second and
last matrix as being rotations around z, Rz(α) and Rz(β),
and the third matrix as being a rotation about y, Ry(θ), thus
showing that any single-qubit gate can be implemented as
a combination of phase-shift and rotation gates (Fig. 8).

2A proof of this can be found in [9]. I do not reproduce it here
because it involves more complex arithmetic than linear algebra
and is stated as a brute fact by both Cybenko and Barenco et al.

7



Ph(δ)

(a) Controlled version.

D

(b) Single-qubit version.

Figure 9: Equivalent circuits for the controlled phase-shift
gate, where D is defined in Sec. 4.5.

Part 2

(a) Controlled version.

C X B X A

(b) Single-qubit and CNOT version.3

Figure 10: Equivalent circuits for the Part 2 gates, where
A, B and C are defined in Sec. 4.5.

4.5. Reducing 2-Qubit Controlled Gates

We are still using arbitrary targets in our controlled gates.
We now want to restrict our gate set so that the only 2-qubit
gate we use is the CNOT gate, i.e. the controlled X gate. To
do so, we implement Part 1 and Part 2 of the factorization
found earlier using only CNOT and single-qubit gates.

Remarkably, the controlled version of the Part 1 matrix,
Ph(δ), can be reduced to a single qubit gate on the control

bit, namely D =

[
1 0
0 eiδ

]
. To see this, create the 4× 4 ma-

trix corresponding to the controlled circuit in Fig. 9a and
to the single-qubit gate circuit in Fig. 9b following the pro-
cedure from Sec. 3.1 and 3.2. In both cases, the resulting

matrix is

1 0 0 0
0 1 0 0
0 0 eiδ 0
0 0 0 eiδ

 .

To implement the controlled version of Part 2 with only
CNOT gates, Cybenko proposes the following matrices:

A =

[
eiα/2 0
0 e−iα/2

] [
cos θ/4 sin θ/4
− sin θ/4 cos θ/4

]

B =

[
cos−θ/4 sin−θ/4
− sin−θ/4 cos−θ/4

] [
e−i(α+β)/4 0

0 ei(α+β)/4

]
3Cybenko shows the gates in the opposite order in the quantum

circuit (A−B −C instead of C −B −A), but this struck me as
incorrect since quantum circuits proceed from left to right unlike
matrix multiplication which goes from right to left. Cybenko is
more of an expert than me, and thus more likely to be correct, but
I chose to go with my understanding in my version of the diagram.

C =

[
e−i(α−β)/4 0

0 ei(α−β)/4

]
These matrices have a remarkable property: ABC = I
and AXBXC is equal to the product of matrices in Part 2.
This means that to get a controlled version of Part 2, we can
interleave the single-qubit gates A, B and C with CNOT
gates, so that, if the control bit is 1, AXBXC = Part 2
will be applied, and otherwise ABC = I will be (Fig. 10).

5. Conclusion
We have thus managed to factor any quantum algorithm
(represented by a unitary matrix) into a circuit of elemen-
tary quantum gates, namely the phase-shift, rotation, and
CNOT gates, which is the most widely used set of gates in
current quantum circuits [10]. The very fact that we were
able to do this has important consequences, among which:

• We have proven that the set phase-shift + rotation +
CNOT is a universal gate set.

• Any hardware manufacturer that implements these
gates above can be confident that they have built a uni-
versal quantum computer.

• Not only does any possible computation correspond
to a unitary matrix (which we assumed in Sec 2), but
the converse (which we did not assume) is also true:
any unitary matrix corresponds to a possible quantum
computation, implementable with our gates.

What of the practical uses of the algorithm itself? Some
researchers have called quantum circuit decomposition the
quantum equivalent of compilation [11], which seems to
imply that people will often design algorithms as unitary
matrices and compile them to gate form. If this becomes
the norm, then our algorithm may be very useful indeed.
Sadly, there is a good reason to believe that large quantum
algorithms will rarely be designed directly in matrix form:
the matrices are huge (2n × 2n)! For example, assuming 8
bytes per entry, the matrix for a 16-qubit algorithm would
occupy 32GB of storage. Indeed, arguably the whole rea-
son quantum computing is so powerful is that it allows us to
perform a 2n × 2n matrix multiplication with just n qubits.

Though we may rarely compile entire algorithms from their
matrix form, new multi-bit gates are bound to be invented
from time to time. When this happens, we will need to
implement them in hardware, and the algorithm described
here gives us the means to do so. In that sense, quantum
circuit decomposition is crucial to the progress of quantum
computing.

There is still substantial research aiming to improve both
the number of elementary gates in the final decomposi-
tion [12–14] and the speed at which the decomposition is
computed [11]. The algorithm presented here shines by
its relative simplicity, but not by its optimality in either of

8



these dimensions. Indeed, there are further aspects that our
method ignores entirely. For instance, while our method
produces a decomposition without using extra qubits, it
also couldn’t use extra qubits even if they were available.
Barenco et al. [7] show that by taking advantage working
qubits, it is possible to dramatically reduce the number of
gates used in a quantum circuit decomposition. Another
question not addressed here is that of other universal sets
of gates: while our set is a popular one, it is far from the
only universal gate set [10]. Indeed, it is possible to create
universal gate sets containing a single gate type, rather than
the three types we used here [15].

There is thus much in the quantum circuit decomposition
literature that I couldn’t cover here, but the method I pre-
sented proves important facts about quantum computation
and hopefully serves as a good introduction to the field.

References
[1] Thomas S Shores. Applied linear algebra and matrix analy-

sis. Undergraduate Texts in Mathematics. Springer Interna-
tional Publishing, Basel, Switzerland, 2 edition, May 2018.

[2] George Cybenko. Reducing quantum computations to ele-
mentary unitary operations. Computing in Science & Engi-
neering, 3(2):27–32, 2001.

[3] Peter W Shor. Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings 35th annual
symposium on foundations of computer science, pages 124–
134. Ieee, 1994.

[4] Andy Matuschak and Michael A. Nielsen. Quantum com-
puting for the very curious. 2019. https://quantum.
country/qcvc.

[5] Andy Matuschak and Michael A. Nielsen. How does the
quantum search algorithm work? https://quantum.
country/search, 2019.

[6] John Preskill. Simulating quantum field theory with a quan-
tum computer. arXiv preprint arXiv:1811.10085, 2018.

[7] Adriano Barenco, Charles H Bennett, Richard Cleve,
David P DiVincenzo, Norman Margolus, Peter Shor, Tycho
Sleator, John A Smolin, and Harald Weinfurter. Elementary
gates for quantum computation. Physical review A, 52(5):
3457, 1995.

[8] Andy Matuschak and Michael A. Nielsen. Quantum me-
chanics distilled. https://quantum.country/qm,
2020.

[9] gls. General parametrisation of an arbitrary 2 × 2
unitary matrix? https://quantumcomputing.
stackexchange.com/questions/5199/
general-parametrisation-of-an-
arbitrary-2-times-2-unitary-matrix, 2019.

[10] Colin P. Williams. Quantum gates. In Texts in Computer
Science, pages 51–122. Springer London, 2011. doi: 10.
1007/978-1-84628-887-6 2. URL https://doi.org/
10.1007/978-1-84628-887-6_2.

[11] Timothée Goubault de Brugière, Marc Baboulin, Benoı̂t
Valiron, and Cyril Allouche. Quantum circuits synthesis us-
ing householder transformations. Computer Physics Com-
munications, 248:107001, 2020.

[12] Michal Sedlák and Martin Plesch. Towards optimization of
quantum circuits. Open Physics, 6(1):128–134, 2008.

[13] Juha J Vartiainen, Mikko Möttönen, and Martti M Salomaa.
Efficient decomposition of quantum gates. Physical review
letters, 92(17):177902, 2004.

[14] Vivek V Shende, Stephen S Bullock, and Igor L Markov.
Synthesis of quantum-logic circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
25(6):1000–1010, 2006.

[15] David Elieser Deutsch. Quantum computational networks.
Proceedings of the Royal Society of London. A. Mathemati-
cal and Physical Sciences, 425(1868):73–90, 1989.

9

https://quantum.country/qcvc
https://quantum.country/qcvc
https://quantum.country/search
https://quantum.country/search
https://quantum.country/qm
https://quantumcomputing.stackexchange.com/questions/5199/general-parametrisation-of-an-arbitrary-2-times-2-unitary-matrix
https://quantumcomputing.stackexchange.com/questions/5199/general-parametrisation-of-an-arbitrary-2-times-2-unitary-matrix
https://quantumcomputing.stackexchange.com/questions/5199/general-parametrisation-of-an-arbitrary-2-times-2-unitary-matrix
https://quantumcomputing.stackexchange.com/questions/5199/general-parametrisation-of-an-arbitrary-2-times-2-unitary-matrix
https://doi.org/10.1007/978-1-84628-887-6_2
https://doi.org/10.1007/978-1-84628-887-6_2

