
First return, then explore

Adrien Ecoffet∗1,2, Joost Huizinga∗1,2, Joel Lehman1,2, Kenneth O. Stanley1,2 & Jeff Clune1,2

1Uber AI Labs, San Francisco, CA, USA
2OpenAI, San Francisco, CA, USA
∗ These authors contributed equally to this work

Correspondence should be addressed to Adrien Ecoffet (email: adrienecoffet@gmail.com), Joost

Huizinga (email: joost.hui@gmail.com), and Jeff Clune (email: jclune@gmail.com).

Please cite as:

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O. and Clune, J. First return, then explore. Nature

590, 580–586 (2021). https://doi.org/10.1038/s41586-020-03157-9

The promise of reinforcement learning is to solve complex sequential decision problems au-
tonomously by specifying a high-level reward function only. However, reinforcement learning
algorithms struggle when, as is often the case, simple and intuitive rewards provide sparse1

and deceptive2 feedback. Avoiding these pitfalls requires thoroughly exploring the environ-
ment, but creating algorithms that can do so remains one of the central challenges of the field.
We hypothesise that the main impediment to effective exploration originates from algorithms
forgetting how to reach previously visited states (“detachment”) and from failing to first re-
turn to a state before exploring from it (“derailment”). We introduce Go-Explore, a family of
algorithms that addresses these two challenges directly through the simple principles of ex-
plicitly remembering promising states and first returning to such states before intentionally
exploring. Go-Explore solves all heretofore unsolved Atari games and surpasses the state of
the art on all hard-exploration games1, with orders of magnitude improvements on the grand
challenges Montezuma’s Revenge and Pitfall. We also demonstrate the practical potential of
Go-Explore on a sparse-reward pick-and-place robotics task. Additionally, we show that
adding a goal-conditioned policy can further improve Go-Explore’s exploration efficiency
and enable it to handle stochasticity throughout training. The substantial performance gains
from Go-Explore suggest that the simple principles of remembering states, returning to them,
and exploring from them are a powerful and general approach to exploration, an insight that
may prove critical to the creation of truly intelligent learning agents.

1

https://doi.org/10.1038/s41586-020-03157-9

Recent years have yielded impressive achievements in Reinforcement Learning (RL), including

world-champion level performance in Go3, Starcraft II4, and Dota II5, as well as autonomous

learning of robotic skills such as running, jumping, and grasping6,7. Many of these successes were

enabled by carefully-designed, highly-informative reward functions. However, for many practical

problems, defining a good reward function is non-trivial; to guide a robot to a refrigerator, one

might provide a reward only when the refrigerator is reached, but doing so makes the reward

sparse if many actions are required to reach the refrigerator. Unfortunately, a denser reward (e.g.

the Euclidean distance to the refrigerator), can be deceptive; naively following the reward function

may lead the robot into a dead end and can also produce unintended (and potentially unsafe)

behaviour (e.g. the robot not detouring around obstacles like pets)8–10.

These challenges motivate designing RL algorithms that better handle sparsity and deception. A

key observation is that sufficient exploration of the state space enables discovering sparse rewards

and avoiding deceptive local optima11,12. We argue that two major issues have hindered the ability

of previous algorithms to explore. The first is detachment, wherein the algorithm prematurely stops

returning to certain areas of the state space despite having evidence that those areas are promising

(SI “Detachment”). Detachment is especially likely when (as is common) there are multiple areas

to explore because the algorithm may partially explore one area, switch to a second area, and forget

how to visit the first area. The second is derailment, wherein the exploratory mechanisms of the al-

gorithm prevent it from returning to previously visited states, preventing exploration directly and/or

forcing practitioners to make exploratory mechanisms so minimal that effective exploration does

not occur (SI “Derailment”). For example, if a long string of correct actions is required to reach

a particular area, a high probability of exploratory actions prevents the area from being reached

while a low probability of exploratory actions results in little exploration in general. We present

Go-Explore, a family of algorithms designed to explicitly avoid detachment and derailment, and

demonstrate that it thoroughly explores environments. Go-Explore surpasses human performance

on (solves) all previously unsolved Atari games*, which has been posited as a major milestone in

previous work13,15,16. It also surpasses the state of the art on all hard-exploration Atari games (i.e.

where obtaining rewards requires long sequences of correct actions, meaning randomly sampling

actions rarely produces rewards and thus more intelligent exploration is needed). Additionally,

*Concurrent work13 similarly reached this milestone (SI “Comparing Go-Explore and Agent57”), but under easier,
mostly deterministic conditions that do not meet community-defined standards14 for evaluation on Atari. Our descrip-
tions of prior results include only evaluations meeting these standards, unless explicitly mentioned (Methods “State of
the art on Atari”).

2

we demonstrate that it can solve a practical simulated robotics problem with an extremely sparse

reward. Finally, we show that its performance can be greatly increased by incorporating minimal

domain knowledge and examine how harnessing learned skills during exploration can improve

exploration efficiency, highlighting the versatility of the Go-Explore family.

The Go-Explore family of algorithms

To avoid detachment, Go-Explore builds an archive of the different states it has visited in the

environment, thus ensuring that states cannot be forgotten. Starting from an archive containing

only the initial state, it builds this archive iteratively: first, it probabilistically selects a state to

return to from the archive (Fig. 1a), returns to that state (the “go” step; Fig. 1b), then explores from

that state (the “explore” step; Fig. 1c) and updates the archive with all novel states encountered

(Fig. 1e). The overall process is reminiscent of classical planning algorithms (e.g. the archive can

be considered a frontier, the “explore” step represents expanding a node, etc.), the potential of

which have been relatively unappreciated within deep RL. However, for problems focused on by

the RL community (like hard-exploration Atari games), which are high-dimensional with sparse

rewards and/or stochasticity, no known planning method works14,17. Among other reasons (SI “Go-

Explore, Planning, and Model-based RL”), such state spaces are too large to search exhaustively

(requiring hard-to-invent heuristics to prune search) and stochastic transitions make it impossible

to know whether a node has been fully expanded. Go-Explore can be seen as porting the principles

of planning algorithms to these challenging problems.

Previous RL algorithms do not separate returning from exploring, and instead mix in exploration

throughout an episode, usually by adding random actions a fraction of the time15,18 or by sampling

from a stochastic policy (a function that decides which action to take in each state, often a neural

network)19,20. By first returning before exploring, Go-Explore avoids derailment by minimising

exploration when returning (thus minimising failure to return) after which it can purely focus on

exploration.

Because non-trivial environments have too many states to store explicitly, Go-Explore groups

similar states into cells, and states are only considered novel if they are in a cell that does not yet

exist in the archive (Fig. 1d). The archive stores one state per cell, and to maximise performance, if

a state maps to an already known cell, but is associated with a better trajectory (higher performing

or shorter; Methods), that state and its associated trajectory will replace the state and trajectory

currently associated with that cell. Go-Explore selects states to return to (Fig. 1a) proportionally

3

probabilistically

select state

from archive

go to

state

explore

from state

update

archive

trained network
(robust to stochasticity)

Exploration Phase

...

a

b

c

d

e

Environment

EnvironmentEnvironment

map encountered

states to cells

restore simulator

state
OR

run goal-conditioned

policy

updated

information

new state

demonstrations
(trajectories from Exploration Phase)

algorithm for learning

from demonstrations

in environment with

stochasticity

Robustification Phase
(not necessary in all variants)

...

500

3%

27%

...

Prob:

7 ...

0 108 ...

State Cell Score Visits ...

0 108 ...

...

500 1 ...

500 8

...

...

+

State Cell Score Visits ...

Figure 1: Overview of Go-Explore. (a) Probabilistically select a state from the archive, preferring
states associated with promising cells. (b) Return to the selected state, such as by restoring simu-
lator state or by running a goal-conditioned policy. (c) Explore from that state by taking random
actions or sampling from a trained policy. (d) Map every state encountered during returning and
exploring to a low-dimensional cell representation. (e) Add states that map to new cells to the
archive and update other archive entries. 4

to weights it assigns to their associated cells in the archive (Methods).

While returning to a previously found state can be done with a trained policy (demonstrated

in Sec. “Policy-based Go-Explore”), Go-Explore provides a unique opportunity to leverage the

availability and widespread use of simulators in RL tasks7,21–23. Simulators are restorable envi-

ronments because previous states can be saved and instantly returned to, thus completely negating

derailment.

When exploiting this property of restorable environments, Go-Explore thoroughly explores the

environment during its exploration phase by continually restoring (and subsequently taking ex-

ploratory actions from) one of the states in its archive (Fig. 1). It eventually returns the highest-

scoring trajectory (sequence of actions) it found. Such trajectories are not robust to stochasticity or

unexpected outcomes (e.g. a robot may slip and miss a crucial turn, invalidating the entire trajec-

tory). To resolve this issue, Go-Explore trains a robust policy by Learning from Demonstrations

(LfD)24, where the exploration phase trajectories replace the usual human expert demonstrations

(similar to Guo et al. (2014)25), in a variant of the environment featuring sufficient stochasticity

to ensure robustness. The exploration-phase trajectories will be informative in the stochastic en-

vironment as long as following a close approximation to the example trajectory still leads to a

high cumulative reward (SI “Go-Explore and Stochasticity”). Because it produces robust policies

from open-loop (i.e. predetermined) trajectories, we call this LfD process the robustification phase

(Fig. 1 “Robustification Phase”).

Learning Atari with state restoration

The Atari benchmark suite26, a prominent benchmark for RL algorithms15,27,28, is an appropriate

test-bed for Go-Explore because it contains a diverse set of games with varying levels of reward

sparsity and deceptiveness. The following experiment highlights the benefit of a “go” step that re-

stores the simulator state directly. In this experiment, the “explore” step happens through random

actions, meaning the exploration phase operates entirely without a trained policy, which assumes

that random actions have a sufficiently high probability of discovering new cells; more complex

problems may require policy-based exploration (explored below). The state-to-cell mapping for

Go-Explore’s archive consists of downscaling the current game frame from the original 210× 160

colour frame to a much smaller grayscale image, which (in contrast to most RL pre-processing that

reduces dimensionality to save compute while minimising conflation15) aggregates similar-looking

frames into the same cell (Fig. 1d). This mapping does not require game-specific knowledge and

5

proves to be efficient across the entire Atari benchmark, though more complex environments may

require more sophisticated (e.g. learned) representations. Good state-to-cell-mapping parameters

result in a representation that strikes a balance between two extremes: lack of aggregation (e.g.

one cell for every frame, which is computationally inefficient) and excessive aggregation (e.g.

assigning all frames to a single cell, which prevents exploration). Because appropriate downscal-

ing parameters (width, height, and number of possible grayscale values) vary across Atari games

(SI “Exploration phase without dynamic representations”) as well as when exploration progresses

within a given game, these parameters are optimised dynamically at regular intervals (Methods

“Downscaling on Atari”). The hyperparameters of this optimisation procedure are robust and gen-

eralise (SI “Ablations”).

Here, the robustification phase consists of a modified version of the “backward algorithm”29,

currently the highest performing LfD algorithm on Montezuma’s Revenge. Due to the large com-

putational expense of the robustification process, this work focuses on the set of eleven games

that have been considered hard-exploration challenges by the community1 or for which the state-

of-the-art performance was still below human performance (Methods “State of the art on Atari”).

To ensure the trained policy becomes robust to environmental perturbations, during robustification

stochasticity is added to these environments following current community standards14. The demon-

strations provided by the exploration phase provide enough information about available rewards to

allow Go-Explore to eschew standard reward clipping, which overemphasises small rewards30, in

favour of automatically scaling rewards to an appropriate range (Methods).

At test time, the mean performance of Go-Explore is both superhuman and surpasses the state

of the art in all eleven games (except in Freeway where both Go-Explore and the state of the art

reach the maximum score; Fig. 2b). These games include the grand challenges of Montezuma’s

Revenge, where Go-Explore quadruples the state-of-the-art score, and Pitfall, where Go-Explore

surpasses average human performance while previous algorithms were unable to score any points.

The number of frames processed in these experiments is 30 billion (Extended Data Fig. 2 and 4),

similar to that of recent distributed RL algorithms13,27,31. While older algorithms often processed

fewer frames, many of them show signs of convergence (meaning no further progress is expected),

and it is often unclear whether these algorithms would be able to process billions of frames in a

reasonable amount of time.

The ability of the exploration phase to find high-performing trajectories is not limited to hard-

exploration problems; it finds trajectories with superhuman scores for all of the 55 Atari games

6

a Historical progress on Montezuma’s Revenge.

1.73M

1.74M

S
co

re

Go-Explore
(domain knowledge)

Domain General
Domain General (hard-exploration)
Domain Specific (hard-exploration)

1.22M Human World Record

2013 2014 2015 2016 2017 2018 2019 2020
Time of publication

0

10K

20K

30K

40K

50K

Avg. Human

Human Expert

SARSA

Linear
DQN

Gorila
2BFS Brute

MP-EB
DDQN

Duel. DQN

Prior. DQN

A3C

Pop-Art
A3C-CTS

DQN-CTS BASS

ES

DQN-PixelCNN

Reactor

Feature-EB

C51

UBE

Rainbow IMPALA

Ape-X
DeepCS

SIL

RND

R2D2

Agent57

MuZero

PPO+CoEX

Pellet

POER MIME

NGU

Go-Explore
(preprint, domain specific)

Go-Explore variant
(DTSIL)

Go-Explore

b Performance on the 11 focus games of the Go­Explore variant that uses the downscaled
representation during the exploration phase.

Game
Exploration

Phase
Robustification

Phase
SOTA Avg. Human

Berzerk 131,216 197,376 1,383 2,630
Bowling 247 260 69 160
Centipede 613,815 1,422,628 10,166 12,017
Freeway 34 34 34 30
Gravitar 13,385 7,588 3,906 3,351

Montezuma’s Revenge 24,758 43,791 11,618 4,753
Pitfall 6,945 6,954 0 6,463

Private Eye 60,529 95,756 26,364 69,571
Skiing ­4,242 ­3,660 ­10,386 ­4,336
Solaris 20,306 19,671 3,282 12,326
Venture 3,074 2,281 1,916 1,187

Figure 2: Performance of robustified Go-Explore on Atari games. (a) Go-Explore produces
substantial improvements over previous methods on Montezuma’s Revenge, a grand challenge
which has been the primary focus of hard-exploration research for many years. Different methods
use different amounts of computation. Go-Explore processed a similar number of frames (30B)
as other distributed RL algorithms like Ape-X (22B) and NGU (35B). (b) It exceeds the average
human score in each of the 11 hard-exploration and unsolved games in the Atari suite, and matches
or beats (often by a factor of 2 or more) the state of the art in each of these games. Bold indicates
the best scores with stochastic evaluation. Score differences between the exploration and robusti-
fication phases are discussed in SI “Robustification scores analysis”. A video of high performing
runs can be found at https://youtu.be/e aqRq59-Ns.

7

https://youtu.be/e_aqRq59-Ns

P
riv

at
eE

ye
S

ki
in

g
K

un
gF

uM
as

te
r

Fr
ee

w
ay

P
on

g
E

nd
ur

o
P

itf
al

l
H

er
o

B
ow

lin
g

S
ol

ar
is

Za
xx

on
R

iv
er

ra
id

A
st

er
oi

ds
V

en
tu

re
Fi

sh
in

gD
er

by
P

ho
en

ix
Te

nn
is

Tu
ta

nk
ha

m
Ic

eH
oc

ke
y

G
ra

vi
ta

r
B

an
kH

ei
st

M
on

te
zu

m
aR

ev
en

ge
B

ox
in

g
C

ra
zy

C
lim

be
r

K
an

ga
ro

o
A

m
id

ar
S

ea
qu

es
t

R
ob

ot
an

k
Y

ar
sR

ev
en

ge
B

ea
m

R
id

er
B

re
ak

ou
t

B
at

tle
Zo

ne
N

am
eT

hi
sG

am
e

U
pN

D
ow

n
W

iz
ar

dO
fW

or
B

er
ze

rk
K

ru
ll

G
op

he
r

S
pa

ce
In

va
de

rs
S

ta
rG

un
ne

r
C

en
tip

ed
e

M
sP

ac
m

an
A

ss
au

lt
Q

be
rt

Ti
m

eP
ilo

t
D

ou
bl

eD
un

k
A

st
er

ix
R

oa
dR

un
ne

r
A

lie
n

D
em

on
A

tta
ck

C
ho

pp
er

C
om

m
an

d
Fr

os
tb

ite
Ja

m
es

bo
nd

10%

100%

1000%

10000%

100000%

%
 o

f h
um

an
 p

er
fo

rm
an

ce

Exploration Phase
SOTA

Figure 3: Human-normalised performance of the exploration phase and state-of-the-art algo-
rithms on all Atari games. The exploration phase of Go-Explore exceeds human performance in
every game, often by orders of magnitude, and outperforms the prior state of the art in most games
(details in Extended Data Fig. 2a and Extended Data Table 3).

provided by OpenAI gym32, a feat that has not been performed before (save concurrent work13).

In 85.5% of these games the trajectories reach scores higher than those achieved by state-of-the-

art RL algorithms (Fig. 3). Go-Explore’s performance also exceeds that of planning algorithms

(which similarly restore simulator states) that were evaluated on Atari14,17.

In practical applications, it is often possible to define helpful features based on domain knowl-

edge. Go-Explore can harness such easy-to-provide domain knowledge to substantially boost per-

formance by constructing a cell representation (for the archive, not policy inputs) that only contains

features relevant for exploration. The domain-knowledge features are the discretised position of

the agent and relevant items held (Methods). With this domain knowledge cell representation,

Go-Explore produces robustified policies that achieve a mean score of over 1.7 million on Mon-

tezuma’s Revenge, surpassing the state of the art by a factor of 150 as well as the human world

record of 1.2 million33 (Fig. 2a). On Pitfall, the addition of domain knowledge produces robustified

policies with a mean score of 102,571, close to the maximum possible of 112,000 and far above

the state of the art of 0. The exploration phase explores both games extensively (Extended Data

Fig. 3b), discovering effectively every unique location in each game (SI “Exploration in Atari”).

Previous work suggests that intrinsic motivation algorithms benefit far less from domain knowl-

8

edge; a count-based exploration algorithm with the same domain knowledge representation scores

12,240 on Montezuma’s Revenge34.

A hard-exploration robotics environment

While robotics is a promising application for RL and it is often easy to define the high-level goal

of a robotics task (e.g. to put a cup in a cupboard), it is much more difficult to define a sufficiently

dense reward function10 (e.g. reward all of the low-level motor commands to move toward the cup,

grasp it, etc.). Go-Explore enables forgoing such a dense reward function in favour of a sparse

reward function that only considers the high-level task. Additionally, robot policies are usually

trained in simulation before being transferred to the real world7,21–23, making robotics a natural

domain to demonstrate the usefulness of harnessing the ability to restore simulator state.

The following experiment, featuring a realistic simulation of a real-world robot35, demonstrates

that Go-Explore can solve a practical hard-exploration task where a robot arm must pick up an

object and put it inside of one of four shelves, two of which are behind latched doors (Fig. 4a).

A reward is given only when the object is put into a specified target shelf. A state-of-the-art

RL algorithm for continuous control (PPO20) does not encounter a single reward after training

in this environment for a billion frames, showcasing the hard-exploration nature of this problem.

Go-Explore’s “explore” step takes random actions and states are assigned to cells with an easy-to-

provide domain-knowledge-based mapping (Methods).

The exploration phase quickly and reliably discovers trajectories for putting the object in each

of the four shelves (Fig. 4b and Extended Data Fig. 5a). Go-Explore succeeds because it thor-

oughly explores its environment without suffering from detachment (e.g. once each cupboard

is opened, Go-Explore never forgets about those states) or derailment (Go-Explore can directly

restore to difficult-to-reach states like grasping). In contrast, a count-based intrinsic motivation

algorithm with the same representation as the exploration phase is incapable of discovering any

reward (Fig. 4c), and discovers only a fraction of the cells discovered by the exploration phase

after 2 billion frames of training, 100 times more than the exploration phase (Fig. 4b). Despite re-

ceiving intrinsic rewards for touching the object, this control was incapable of learning to reliably

grasp objects. Evidence suggests that this failure to grasp is due to the problem of derailment (SI

“Derailment in robotics”), which Go-Explore is specifically designed to solve. Robustifying the

trajectories found by Go-Explore produces robust policies in 99% of cases (Fig. 4c).

9

a Solving the top right shelf of the robotics environment.

b Cells discovered by the exploration phase and an intrinsic
motivation control.

0.0 0.5 1.0 1.5 2.0
1e9

0

500

1K

Top Right

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

250

500

750

1K

Bottom Right

0.0 0.5 1.0 1.5 2.0
1e9

0

100

200

N
um

be
r o

f C
el

ls

Top Left

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

100

200

N
um

be
r o

f C
el

ls

Bottom Left

 Go-Explore Expl. Phase PPO + IM Control Approx. Solved

c Robustification progress per target shelf.

0 2 4 6
1e8

0%

25%

50%

75%

100%
Top Right

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0%

25%

50%

75%

100%
Bottom Right

0.0 0.5 1.0 1.5
1e9

0%

25%

50%

75%

100%

S
uc

ce
ss

 R
at

e

Top Left

0.00 0.25 0.50 0.75 1.00
Frames 1e9

0%

25%

50%

75%

100%

S
uc

ce
ss

 R
at

e

Bottom Left

 Go-Explore Robustification Phase PPO + IM Control

Figure 4: Go-Explore can Solve a Challenging, Sparse-Reward, Simulated Robotics Task.
(a) A simulated Fetch robot needs to grasp an object and put it in one of four shelves. (b) The
exploration phase significantly outperforms an intrinsic motivation control using the same cell
representation. (c) For each of four different target locations, including the two with a door, the
robot is able to learn to pick the object up and place it on the shelf in 99% of trials. Shaded areas
show 95% bootstrap CIs of the mean with 1,000 samples.

10

Policy-based Go-Explore

Leveraging the ability of simulators to restore states increases Go-Explore’s efficiency, but is not a

requirement. When returning, instead of restoring simulator state, it is possible to execute a policy

conditioned on (i.e. told to go to) the cell to return to, which we call policy-based Go-Explore.

There are advantages to doing so. First, it enables sampling from the policy during the “explore”

step, which can substantially increase exploration efficiency vs. taking random actions because

the policy can generalise to new situations (e.g. it need only learn to overcome a type of obstacle

once instead of solving that problem again each time via random actions). To test this hypothesis,

our implementation commits with equal probability to either taking random actions or sampling

from the policy for the duration of the “explore” step, making it possible to compare random and

policy-based exploration (Methods). Second, training a policy in the exploration phase obviates the

need for robustification and thus removes its associated additional complexity, hyperparameters,

and overhead. Finally, policy-based Go-Explore can explore directly in a stochastic environment

(which we do in our experiments) and can potentially handle forms of stochasticity not explored

in our experiments (e.g. stochastic rewards; SI “Policy-based Go-Explore and Stochasticity”).

The goal-conditioned policy is trained during the exploration phase with a common RL al-

gorithm (PPO20). Because goal-conditioned policies often struggle to reach distant states36 (SI

“Ablations”), the policy is guided towards the selected state by being presented with intermedi-

ate goals along the best trajectory that previously led to the selected state (Methods). Policy-based

Go-Explore includes additional innovations to promote exploration and stabilise learning, the most

important of which are Self-Imitation Learning37 (SI “Ablations”), dynamic entropy increase, soft-

trajectories, and dynamic episode limits, all discussed in detail in Methods.

Policy-based Go-Explore was tested on Montezuma’s Revenge and Pitfall with the domain-

knowledge cell representation for the archive (and to represent the goal to the policy; the game state

is input as pixels). It beats the state of the art and human performance with a mean reward of 97,728

points on Montezuma’s Revenge and 20,093 points on Pitfall (Fig. 5), demonstrating that Go-

Explore’s performance is not merely a result of its ability to leverage simulator restorability, but is a

function of its overall design. Policy-based Go-Explore also outperforms a concurrently developed,

similar algorithm34 in terms of performance and sample efficiency (SI “Comparing Policy-based

Go-Explore and DTSIL”). Furthermore, confirming our hypothesis, sampling from the policy is

more effective at discovering new cells than taking random actions, and becomes increasingly

effective across training because the policy gains new, generally useful skills, ultimately resulting

11

a Montezuma’s Revenge

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Frames 1e10

0

20K

40K

60K

80K

100K

120K

M
ea

n
R

ew
ar

d
to

 B
es

t C
el

l

state of the art
average human

b Pitfall

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e10

0

5K

10K

15K

20K

25K

M
ea

n
R

ew
ar

d
to

 B
es

t C
el

l

state of the art

average human

Figure 5: Policy-based Go-Explore with domain knowledge outperforms state-of-the-art and
human performance in Montezuma’s Revenge and Pitfall. On both Montezuma’s Revenge (a)
and Pitfall (b), performance increases throughout the run, suggesting even higher performance is
possible with additional training time. Shaded areas show 95% bootstrap CIs of the mean with
1,000 samples.

in the discovery of over four times more cells than random actions on both Montezuma’s Revenge

and Pitfall (Extended Data Fig. 7), highlighting the potential of goal-conditioned, policy-based

exploration over the usual random actions used in RL.

Conclusion

The effectiveness of the Go-Explore family of algorithms presented in this work suggests that it

will enable progress in many domains that can be framed as sequential decision making problems,

including robotics7,21–23, language understanding38, and drug design39. However, these instan-

tiations represent only a fraction of the possible ways in which the Go-Explore paradigm can be

implemented, opening up many exciting possibilities for future research. A key direction for future

work is to learn cell representations, such as through compression-based methods40,41, contrastive-

predictive encodings42 or auxiliary tasks43, which would allow Go-Explore to generalise to even

more complex domains. Other future extensions could learn to choose which cells to return to,

learn which cells to try to reach during the exploration step, learn a specialised policy for explo-

ration in the “explore” step, learn to explore safely in the real world by mining diverse catastrophes

in simulation, maintain a continuous density-based archive rather than a discrete cell-based one,

12

improve sample efficiency by leveraging multiple trajectories (or even all transitions) from a single

exploration-phase run or improve the robustification phase to work from a single demonstration,

and so on. Furthermore, the planning-like nature of the Go-Explore exploration phase highlights

the potential of porting other powerful planning algorithms like MCTS44, RRT45, A*46, or con-

formant planning47 to high-dimensional state-spaces. These new directions offer rich possibilities

to improve the generality, performance, robustness, and efficiency of algorithms inspired by Go-

Explore. Finally, the insights presented in this work extend broadly; the simple decomposition of

remembering previously found states, returning to them, and then exploring from them appears to

be especially powerful, suggesting it may be a fundamental feature of learning in general. Har-

nessing these insights, either within or outside of the context of Go-Explore, may be essential to

improve our ability to create generally intelligent agents.

References

1. Bellemare, M. et al. Unifying count-based exploration and intrinsic motivation in NIPS

(2016), 1471–1479.

2. Lehman, J. & Stanley, K. O. Novelty Search and the Problem with Objectives in Genetic

Programming Theory and Practice IX (GPTP 2011) (2011).

3. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359

(2017).

4. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning.

Nature 575, 350–354 (2019).

5. OpenAI et al. Dota 2 with Large Scale Deep Reinforcement Learning. arXiv preprint arXiv:1912.06680

(2019).

6. Merel, J. et al. Hierarchical visuomotor control of humanoids. arXiv preprint arXiv:1811.09656

(2018).

7. OpenAI et al. Learning dexterous in-hand manipulation. The International Journal of Robotics

Research 39, 3–20 (2020).

8. Lehman, J. et al. The Surprising Creativity of Digital Evolution: A Collection of Anec-

dotes from the Evolutionary Computation and Artificial Life Research Communities. CoRR

abs/1803.03453 (2018).

9. Amodei, D. et al. Concrete Problems in AI Safety. CoRR abs/1606.06565 (2016).

13

10. Smart, W. D. & Kaelbling, L. P. Effective reinforcement learning for mobile robots in

Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.

02CH37292) 4 (2002), 3404–3410.

11. Lehman, J. & Stanley, K. O. Abandoning objectives: Evolution through the search for nov-

elty alone. Evolutionary computation 19, 189–223 (2011).

12. Conti, E. et al. Improving exploration in evolution strategies for deep reinforcement learning

via a population of novelty-seeking agents in Advances in neural information processing

systems (2018), 5027–5038.

13. Puigdomènech Badia, A. et al. Agent57: Outperforming the Atari Human Benchmark. arXiv

preprint arXiv:2003.13350 (2020).

14. Machado, M. C. et al. Revisiting the Arcade Learning Environment: Evaluation Protocols

and Open Problems for General Agents. J. Artif. Intell. Res. 61, 523–562 (2018).

15. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–

533 (2015).

16. Aytar, Y. et al. Playing hard exploration games by watching YouTube. arXiv preprint arXiv:1805.11592

(2018).

17. Lipovetzky, N., Ramı́rez, M. & Geffner, H. Classical Planning with Simulators: Results on

the Atari Video Games in IJCAI (2015).

18. Sutton, R. S. & Barto, A. G. Reinforcement learning: An introduction (Bradford, 1998).

19. Mnih, V. et al. Asynchronous methods for deep reinforcement learning in International con-

ference on machine learning (2016), 1928–1937.

20. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal Policy Opti-

mization Algorithms. CoRR abs/1707.06347 (2017).

21. Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. Robots that can adapt like animals. Nature

521, 503–507 (2015).

22. Peng, X. B., Andrychowicz, M., Zaremba, W. & Abbeel, P. Sim-to-real transfer of robotic

control with dynamics randomization in 2018 IEEE international conference on robotics

and automation (ICRA) (2018), 1–8.

23. Tan, J. et al. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint

arXiv:1804.10332 (2018).

14

24. Hester, T. et al. Deep Q-learning From Demonstrations in AAAI (2018).

25. Guo, X., Singh, S. P., Lee, H., Lewis, R. L. & Wang, X. Deep Learning for Real-Time Atari

Game Play Using Offline Monte-Carlo Tree Search Planning in NIPS (2014).

26. Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The Arcade Learning Environment:

An evaluation platform for general agents. J. Artif. Intell. Res.(JAIR) 47, 253–279 (2013).

27. Horgan, D. et al. Distributed Prioritized Experience Replay. CoRR abs/1803.00933 (2018).

28. Espeholt, L. et al. IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-

Learner Architectures in ICML (2018).

29. Salimans, T. & Chen, R. Learning Montezuma’s Revenge from a Single Demonstration.

arXiv preprint arXiv:1812.03381 (2018).

30. Van Hasselt, H. P., Guez, A., Hessel, M., Mnih, V. & Silver, D. Learning values across

many orders of magnitude in Advances in Neural Information Processing Systems (2016),

4287–4295.

31. Puigdomènech Badia, A. et al. Never Give Up: Learning Directed Exploration Strategies.

arXiv (2020).

32. Brockman, G. et al. OpenAI gym. arXiv preprint arXiv:1606.01540 (2016).

33. ATARI VCS/2600 Scoreboard 2018. http://www.ataricompendium.com/game_

library/high_scores/high_scores.html.

34. Guo, Y. et al. Efficient Exploration with Self-Imitation Learning via Trajectory-Conditioned

Policy. arXiv preprint arXiv:1907.10247 (2019).

35. Wise, M., Ferguson, M., King, D., Diehr, E. & Dymesich, D. Fetch and freight: Standard

platforms for service robot applications in Workshop on autonomous mobile service robots

(2016).

36. Eysenbach, B., Salakhutdinov, R. R. & Levine, S. Search on the replay buffer: Bridging

planning and reinforcement learning in Advances in Neural Information Processing Systems

(2019), 15220–15231.

37. Oh, J., Guo, Y., Singh, S. & Lee, H. Self-Imitation Learning in ICML (2018).

38. Madotto, A. et al. Exploration Based Language Learning for Text-Based Games. arXiv

preprint arXiv:2001.08868 (2020).

15

http://www.ataricompendium.com/game_library/high_scores/high_scores.html
http://www.ataricompendium.com/game_library/high_scores/high_scores.html

39. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design.

Science advances 4, eaap7885 (2018).

40. Alvernaz, S. & Togelius, J. Autoencoder-augmented neuroevolution for visual doom playing

in 2017 IEEE Conference on Computational Intelligence and Games (CIG) (2017), 1–8.

41. Cuccu, G., Togelius, J. & Cudré-Mauroux, P. Playing atari with six neurons. arXiv preprint

arXiv:1806.01363 (2018).

42. Oord, A. v. d., Li, Y. & Vinyals, O. Representation learning with contrastive predictive

coding. arXiv preprint arXiv:1807.03748 (2018).

43. Jaderberg, M. et al. Reinforcement Learning with Unsupervised Auxiliary Tasks. CoRR

abs/1611.05397 (2016).

44. Chaslot, G., Bakkes, S., Szita, I. & Spronck, P. Monte-Carlo Tree Search: A New Framework

for Game AI in AIIDE (2008).

45. Lavalle, S. M. Rapidly-Exploring Random Trees: A New Tool for Path Planning tech. rep.

(Iowa State University, 1998).

46. Hart, P. E., Nilsson, N. J. & Raphael, B. A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107.

ISSN: 0536-1567 (July 1968).

47. Smith, D. E. & Weld, D. S. Conformant graphplan in AAAI/IAAI (1998), 889–896.

Acknowledgements We thank Ashley Edwards, Sanyam Kapoor, Felipe Petroski Such and Jiale Zhi for their ideas, feedback, technical support,

and work on aspects of Go-Explore not presented in this work. We are grateful to the Colorado Data Center and OpusStack Teams at Uber for

providing our computing platform. We thank Vikash Kumar for creating the MuJoCo files that served as the basis for our robotics environment

(https://github.com/vikashplus/fetch).

Author contributions A.E. and J.H. contributed equally and are responsible for the technical work (with J.H. focusing primarily on policy-based

Go-Explore and A.E. on most other technical contributions) as well as the initial draft of the paper. J.C. and K.O.S. led the team. All authors

(A.E., J.H., J.L., K.O.S. and J.C.) significantly contributed to ideation, experimental design, analysing data, strategic decisions, developing the

philosophical motivation for the algorithm, and editing the paper.

Competing Interests Uber Technologies, Inc. has filed a publicly available provisional patent application 16/696,893 about some Go-Explore

variants featuring a deep reinforcement learning model, with all authors (A.E., J.H., J.L, K.O.S. and J.C.) listed as inventors.

Supplementary information is available for this paper.

Correspondence should be addressed to Adrien Ecoffet (email: adrienecoffet@gmail.com), Joost Huizinga (email: joost.hui@gmail.com), and

Jeff Clune (email: jclune@gmail.com).

16

https://github.com/vikashplus/fetch

Methods

State of the art on Atari. With new work on RL for Atari being published on a regular basis, and

with reporting methods often varying significantly, it can be difficult to establish the state-of-the-

art score for each Atari game. At the same time, it is important to compare new algorithms with

previous ones to evaluate progress.

For determining the state-of-the-art score for each game, we considered a set of notable, recently

published papers that cover at least the particular subset of games this paper focuses on, namely

hard-exploration games. Community guidelines advocate sticky actions, which approximate the

minor lack of precision in control that a human might have (e.g. continuing to tilt the joystick

for a fraction of a second longer than intended), as a way to evaluate agents on Atari14. There is

substantial evidence to show that sticky actions can decrease performance substantially compared

to the now deprecated no-ops evaluation strategy14,48,49. As a result, we exclude work which was

only evaluated with no-ops from our definition of state of the art. Fig. 2a includes works tested

only with no-ops as they help bring context to the amount of effort expended by the community

on solving Montezuma’s Revenge. We did not include work that does not provide individualised

scores for each game. To avoid cherry-picking lucky rollouts that can bias scores upward substan-

tially, we also exclude work that only provided the maximum score achieved in an entire run as

opposed to the average score achieved by a particular instance of the agent.

In total, state of the art results were extracted from the following papers: Burda et al. (2018)50,

Castro et al. (2018)48, Choi et al. (2018)51, Fedus et al. (2019)52, Taiga et al. (2020)53, Tang

et al. (2020)54, and Toromanoff et al. (2019)49. Because these works themselves report scores

for several algorithms and variants, including reproductions of previous algorithms, a total of 23

algorithms and variants were included in the state of the art assessment. For each game, the state-

of-the-art score was the highest score achieved across all algorithms.

Downscaling on Atari. In the first variant of Go-Explore presented in this work (Sec. “Learning

Atari with state restoration”), the cell representation is a downscaled version of the original game

frame, which can be applied in any domain where the state is a visual observation (SI “Generality

of downscaling”).

To obtain the downscaled representation, (1) the original frame is converted to grayscale, (2)

its resolution is reduced with pixel area relation interpolation to a width w ≤ 160 and a height

h ≤ 210, and (3) the pixel depth is reduced to d ≤ 255 using the formula b d·p
255
c, where p is

17

the value of the pixel after step (2). A fixed set of values for the parameters w, h and d would

not generalise across games because visuals (e.g. the amount of detail shown on screen and how

much it varies across frames) vary substantially between games (SI “Ablations”). Therefore these

parameters are updated dynamically by proposing different values for each, calculating how a

sample of recent frames would be grouped into cells under these proposed parameters, and then

selecting the values that result in the best cell distribution (as determined by the objective function

defined below).

The objective function for candidate downscaling parameters is calculated based on a target

number of cells T (where T is a fixed fraction of the number of cells in the sample, 12.5% in

our experiment, though the algorithm is relatively robust to different values, see SI “Downscaling

target proportion”), the actual number of cells produced by the parameters currently considered n,

and the distribution of sample frames over cells p. Its general form is

O(p, n) =
Hn(p)

L(n, T)
(1)

L(n, T) measures the discrepancy between the number of cells under the current parameters n and

the target number of cells T . It prevents the representation that is discovered from aggregating too

many frames together, which would result in low exploration, or from aggregating too few frames

together, which would result in an intractable time and memory complexity, and is defined as

L(n, T) =

√∣∣∣n
T
− 1
∣∣∣+ 1 (2)

Hn(p) is the ratio of the entropy of how frames were distributed across cells to the entropy of the

discrete uniform distribution of size n, i.e. the normalised entropy. In this way, the loss encourages

frames to be distributed as uniformly as possible across cells, which is important because highly

non-uniform distributions may suffer from the same lack of exploration that excessive aggregation

can produce or the same intractability that lack of aggregation can produce. Unlike unnormalized

entropy, normalised entropy is comparable across different numbers of cells, allowing the number

of cells to be controlled solely by L(n, T). Its form is

Hn(p) = −
n∑
i=1

pi log(pi)

log(n)
(3)

18

At each step of the randomised search, new values of each parameter w, h and d are proposed by

sampling from a geometric distribution whose mean is the current best known value of the given

parameter. If the current best known value is lower than a minimum mean (set to approximately

1/20th of the maximum value of each parameter: 8 for w, 10.5 for h and 12 for d), the minimum

mean is used as the mean of the geometric distribution (SI “Downscaling distribution minimum

means” shows that the algorithm is not overly sensitive to the particular setting of the minimum

means). New parameter values are re-sampled if they fall outside of the valid range for that param-

eter. In our implementation, the randomised search runs for 3,000 iterations.

The recent frames that constitute the sample over which parameter search is done are obtained

by maintaining a set of recently seen sample frames as Go-Explore runs: each time a frame not

already in the set is seen during the explore step, it is added to the running set with a probability

of 1%, ensuring that the set contains a diverse set of frames rather than just the most recent frames

(SI “Downscaling sampling rate” shows that the algorithm is not overly sensitive to the value of

this parameter). If the resulting set contains more than 10,000 frames, the oldest frame it contains

is removed. This set is reminiscent of a FIFO replay buffer, except that, because it is not used for

training the network, it only stores individual frames, rather than complete state transitions.

The first downscaling parameters are computed after running with a single-cell representation

for 40,000 frames. To handle changes in frame distribution as exploration progresses and to avoid

being stuck with a bad representation, the search for a new representation is performed every 40

million frames. To avoid excessive memory usage, the representation is also recomputed if the

number of cells in the archive exceeds 50,000. When switching to a new representation, a new

archive is created and initialised by converting all previous archives to the new representation

using the frames corresponding to each state in the previous archives (the number of cells in the

archive on Atari over time can be seen in Extended Data Fig. 3a).

Hyperparameter values were found by an initial randomised sweep on Montezuma’s Revenge,

with the 10 best combinations then tested on Gravitar to ensure their generalisability (it is the norm

in hard-exploration work to include Montezuma’s Revenge as part of the tuning set1,13,31,34,50,51,53,55–57,

though which other games are included, if any, varies). Aside from the hyperparameters examined

in SI “Ablations” (the target proportion, minimum means and buffer sampling rate), the hyper-

parameters control the tradeoff between computational and memory efficiency and the quality of

downscaling parameters obtained (e.g. increasing the number of search iterations is likely to pro-

duce better parameters at the cost of more time spent searching for parameters), and should thus

19

be set according to the computational constraints of the user. In our experiments, approximately

25% of the computation spent on the exploration phase was spent searching for new downscaling

parameters.

Domain knowledge representations. The domain knowledge representation for Pitfall consists

of the current room (out of 255) the agent is currently located in, as well as the discretised x, y

position of the agent. In Go-Explore without a return policy, the x, y position is discretised in 8 by

16 pixel cells. Policy-based Go-Explore uses the coarser-grained 18 by 18 pixel cell representation

from Guo et al. (2019)34, which reduces training time (there are fewer cells the policy needs to learn

how to reach) without hindering exploration. In Montezuma’s Revenge, the representation also

includes the keys currently held by the agent (including which room they were found in) as well as

the current level. Most of these features (level, room and x, y position) serve to specify the location

of the agent, capturing the intuition that exploration requires discovering the different available

locations within a space, while the keys held by the agent are important affordances that allow

the agent to reach new locations. Although this information can in principle be extracted from

RAM, in this work it was extracted from pixels through small hand-written classifiers, showing

that domain knowledge representations need not require access to the inner state of a simulator.

For practical applications, the features that help with exploration are often easier to identify and

obtain than the features that are necessary for a policy to successfully execute a task. For example,

in a task where a robot has to pick up an object, it is clear that the robot should explore different

positions for its end effector in order to find a good grip on the object and the end effector position

is generally easy to obtain58,59, but a policy executing such a task will also need to recognise the

object itself under a wide range of circumstances, which may require advanced image processing

that benefits from being learned60.

In robotics, the domain knowledge representation is extracted from the internal state of the

MuJoCo61 simulator. However, similar information has been extracted from raw camera footage

for real robots by previous work7. It consists of the current 3D position of the robot’s gripper,

discretised in voxels with sides of length 0.5 meters, whether the robot is currently touching (with

a single grip) or grasping (touching with both grips) the object, and whether the object is currently

in the target shelf. In the case of the two target shelves with doors, the positions of the door and

its latch are also included. The discretization for latches and doors follows the following formula,

given that d is the distance of the latch/door from its starting position in meters: bd+0.195
0.2
c.

20

Exploration phase. During the exploration phase (SI Algorithm 1), the selection probability of a

cell at each step is proportional to its selection weight, which unless otherwise specified is calcu-

lated as:

W =
1√

Cseen + 1
(4)

where Cseen is the number of exploration steps in which that cell is visited (i.e. the Cseen count

of a cell is increased by one when it is visited in the exploration step, even if the cell was visited

multiple times in that step). This reciprocal square root weight is similar to the exploration bonus

used in algorithms such as UCT62 and count-based intrinsic motivation algorithms1,63.

One advantage of introducing domain knowledge into cell representations is that we can lever-

age our semantic understanding of domain features to improve cell selection. We demonstrate this

advantage on Montezuma’s Revenge with domain knowledge but without a return policy, where

we define the cell selection weight based on: (1) The number of horizontal neighbours to the cell

present in the archive (h); (2) A key bonus: for each location (defined by level, room, and x,y

position), the cell with the largest number of keys at that location gets a bonus of k = 1 (k = 0 for

other cells); (3) the current level. The first two values contribute to the location weight

Wlocation =
2− h
10

+ k. (5)

This value captures the intuition that a cell that lacks neighbours in the archive is likely to be at

the current frontier of search (vertical neighbours do not have the same effect as it is often more

difficult to move from one vertical level to another, requiring e.g. a ladder to be present), and that

an agent has more exploration capacity (i.e. affordances) if it is holding more keys. Wlocation is

then combined with W above as well as the level of the given cell l and the maximum level in the

archive L to obtain the final weight for Montezuma’s Revenge with domain knowledge:

Wmont domain = 0.1L−l (W +Wlocation) . (6)

This level-weighing puts a much stronger weight on cells in the highest level reached so far, thus

focusing exploration on the frontier of search. These domain knowledge features substantially

improve sample complexity in Montezuma’s Revenge relative to the default selection weight W

defined above, but Go-Explore with the default selection weight is still able to get to the end

of level 3, and thus still finds trajectories that traverse Montezuma’s Revenge in its entirety (SI

“Ablations”). While it is possible to produce an analogous domain knowledge cell selection weight

21

for Pitfall with domain knowledge, no such weight produced any substantial improvement over W

alone.

Unless otherwise specified, once a cell is returned to, exploration proceeds with random actions

for a number of steps (100 in Atari, 30 in robotics), or until the end of episode signal is received

from the environment. In Atari, where the action set is discrete, actions are chosen uniformly at

random. In robotics, each of the 9 continuous-valued components of the action is sampled inde-

pendently and uniformly from the interval from -1 to 1. To help explore in a consistent direction,

the probability of repeating the previous action is 95% for Atari and 90% for robotics. The effect

of action repetition is investigated in SI “Ablations”.

For increased efficiency, the exploration phase is processed in parallel by selecting a batch of

return cells and exploring from each one of them across multiple processes. In all runs without a

return policy, the batch size is 100.

All reported experiments, except those involving policy-based Go-Explore, return by directly

restoring simulator state. This method of returning is available whenever a simulator is available,

which is the case for most RL experiments; due to the large number of training trials current RL

algorithms require, as well as the safety concerns that arise when running RL directly in the real

world, simulators have played a key role in training the most compelling applications of RL, and

will likely continue to be harnessed for the foreseeable future.

The backward algorithm. The “backward algorithm”29 places the agent close to the end of the

trajectory and runs PPO (SI “PPO and SIL”) until the performance of the agent matches that of the

demonstration. Once that is achieved, the agent’s starting point is moved closer to the trajectory’s

beginning and the process is repeated.

The algorithm was modified to support multiple (10, in our experiments) demonstrations by se-

lecting a demonstration uniformly at random at the start of each episode, which stabilises learning.

The demonstrations can be obtained cheaply by running the exploration phase multiple times. In

Atari, the agent may be able to find rewards from the starting position before it has worked back-

wards all the way to the start in a way that matches the demonstration performance. To track such

partial progress, a virtual “demonstration” corresponding to starting the agent at the true starting

point was added (SI “Multiple demonstrations”). This process was not performed in the robotics

environment as there is only one point to score, making partial success impossible. Self-Imitation

Learning (SIL)37 was performed on the demonstrations provided to the backward algorithm (SI

22

“PPO and SIL”). In Atari, we normalise the rewards based on the mean absolute returns found

in the demonstrations to allow a single set of hyperparameters to be used across all games, in-

cluding those with widely varying reward magnitudes (SI “Reward scaling”). Pseudo-code, which

includes the modifications above, is shown in SI Algorithm 2, and the neural-network architectures

that were trained are shown in Extended Data Fig. 1.

Evaluation. In Atari, the score of an exploration phase run is measured as the highest score ever

achieved at episode end (SI “Score tracking in the exploration phase”). For the 11 focus games,

exploration phase scores are averaged across 50 exploration phase runs. For the other games, they

are averaged across 5 runs. For domain knowledge, they are averaged across 100 runs.

On Atari, only the 11 focus games are robustified and evaluated in a stochastic setting. Modern

RL algorithms are already able to adequately solve the games not included in the 11 focus games

in this work, as demonstrated by previous work (Extended Data Table 3). Thus, because robus-

tifying these already solved games would have been prohibitively expensive, we did not perform

robustification experiments for these 44 games.

During robustification, a checkpoint is produced every 100 training iterations (13,926,400

frames). A subset of checkpoints corresponding to points during which the rolling average of

scores seen during training was at its highest are tested by averaging their scores across 100 test

episodes. Then the highest scoring checkpoint found is retested with 1,000 new test episodes to

eliminate selection bias. For the downscaled representation, robustification scores are averaged

over 5 runs. For domain knowledge, they are averaged across 10 runs. All testing is performed

with sticky actions (see “State of the art on Atari”). To accurately compare against the human

world record of 1.2 million33, we patched an ALE bug that prevents the score from exceeding 1

million (SI “ALE issues”).

The exploration phase for robotics was evaluated across 50 runs per target shelf, for a total of

200 runs. The reported metric is the proportion of runs that discovered a successful trajectory.

Because the outcome of a robotics episode is binary (success or failure), there is no reason to

continue robustification once the agent is reliably successful (unlike with Atari where it is usually

possible to further improve the score). Thus, robustification runs for robotics are terminated once

they keep a success rate greater than 98.5% for over 150 training iterations (19,660,800 frames),

and the runs are then considered successful. To ensure that the agent learns to keep the object

inside of the shelf, a penalty of -1 is given for taking the object outside of the shelf, and during

robustification the agent is given up to 54 additional steps after successfully putting the object in

23

the shelf (see “Extra frame coef” in Extended Data Table 1a), forcing it to ensure the object doesn’t

leave the shelf. Out of 200 runs (50 per target shelf), 2 runs did not succeed after running for over 3

billion frames (whereas all other runs succeeded in fewer than 2 billion) and were thus considered

unsuccessful (one for the bottom left shelf and the other for the bottom right shelf), resulting in a

99% overall success rate.

The robotics results are compared to two controls. First, to confirm the hard-exploration nature

of the environment, 5 runs per target shelf of ordinary PPO20 with no exploration mechanism were

run for 1 billion frames. At no point during these runs were any rewards found, confirming that

the robotics problem in this paper constitutes a hard-exploration challenge. Secondly, we ran 10

runs per target shelf for 2 billion frames of ordinary PPO augmented with count-based intrinsic

rewards, one of the best modern versions of intrinsic motivation1,53,63,64 designed to deal with

hard-exploration challenges. The representation for this control is identical to the one used in the

exploration phase, so as to provide a fair comparison. Similar to the exploration phase, the counts

for each cell are incremented each time the agent enters a cell for the first time in an episode,

and the intrinsic reward is given by 1√
n

, similar to W . Because it is possible (though rare) for the

agent to place the object out of reach, a per-episode time limit is necessary to ensure that not too

many training frames are wasted on such unrecoverable states. In robustification, the time limit is

implicitly given by the length of the demonstration combined with the additional time described

above and in Extended Data Table 1a. For the controls, a limit of 300 time steps was given as

it provides ample time to solve the environment (Extended Data Fig. 5b), while ensuring that the

object is almost always in range of the robot arm throughout training. As shown in Fig. 4b, this

control was unable to find anywhere near the number of cells found by the exploration phase,

despite of running for significantly longer, and as shown in Fig. 4c, it also was unable to find

any rewards in spite of running for longer than any successful Go-Explore run (counting both the

exploration phase and robustification phase combined).

Hyperparameters. Hyperparameters are reported in Extended Data Table 1. Extended Data Ta-

ble 1b reports the hyperparameters specific to the Atari environment. Of note are the use of sticky

actions as recommended by Machado et al. (2018)14, and the fact that the agent acts every 4 frames,

as is typical in RL for Atari15. In this work, sample complexity is always reported in terms of raw

Atari frames, so that the number of actions can be obtained by dividing by 4. In robotics, the agent

acts 12.5 times per second. Each action is simulated with a timestep granularity of 0.001 seconds,

corresponding to 80 simulator steps for every action taken.

24

While the robustification algorithm originates from Salimans & Chen (2018)29, it was modified

in various ways (Methods “The backward algorithm”). Extended Data Table 1a shows the hyper-

parameters for this algorithm used in this work, to the extent that they are different from those in

the original paper, or were added due to the modifications in this work. Extended Data Tables 2a

and 2b show the state representation for robotics robustification.

With the downscaled representation on Atari, the exploration phase was run for 2 billion frames

prior to extracting demonstrations for robustification. Because exploration phase performance was

slightly below human on Pitfall, Skiing and Private Eye, the exploration phase was allowed to

run longer on these three games (5 billion for Pitfall and Skiing, 15 billion for Private Eye) to

demonstrate that it can exceed human performance on all Atari games. The demonstrations used

to robustify these three games were still extracted after 2 billion frames, and the robustified policies

still exceeded average human performance thanks to the ability of robustification to improve upon

demonstration performance. With the domain knowledge representation on Atari, the exploration

phase ran for 1 billion frames. Robustification ran for 10 billion frames on all Atari games except

Solaris (20 billion) and Pitfall when using domain knowledge demonstrations (15 billion). On

robotics, the exploration phase ran for 20 million frames and details for the robustification phase

are given in the Evaluation section.

Policy-based Go-Explore. The idea in policy-based Go-Explore is to learn how to return (rather

than to restore archived simulator states to return). The algorithm builds off the popular PPO

algorithm20 (SI “PPO and SIL”) and pseudo-code for the algorithm is shown in SI Algorithm 3.

At the heart of policy-based Go-Explore lies a goal-conditioned policy πθ(a|s, g) (Extended Data

Fig. 1c), parameterised by θ, that takes a state s and a goal g and defines a probability distribution

over actions a. Policy-based Go-Explore includes all PPO loss functions described in SI “PPO and

SIL”, except that instances of the state s are replaced with the state-goal tuple (s, g). The total

reward rt is the sum of the trajectory reward rτt (defined below) and the environment reward ret ,

where ret is clipped to the [−2, 2] range. Because most rewards in Atari have an absolute value

greater than 2, this clip range effectively sets the magnitude of in-game rewards to 2. Given that

trajectory rewards are 1 (see below), this clipping implements the intuition that in-game rewards

should be more important than following the trajectory. We implement this intuition in the form

of clipping so as to not increase the importance of the smallest Atari rewards. Policy-based Go-

Explore also includes self-imitation learning (SIL)37 (SI “PPO and SIL”), where SIL actors follow

the same procedure as regular actors, except that they replay the trajectory associated with the cell

25

they select from the archive. Hyperparameters are listed in Extended Data Table 1a.

To fit the batch-oriented paradigm, policy-based Go-Explore updates its archive after every

mini-batch (Extended Data Fig. 6). In addition, the “go” step now involves executing actions in

the environment (as explained below), and each actor independently tracks whether it is in the “go”

step or the “explore” step of the algorithm. For the purpose of updating the archive, no distinction

is made between data gathered during the “go” step and data gathered during the “explore” step,

meaning policy-based Go-Explore can discover new cells or update existing cells while returning.

For the experiments presented in this paper, data is gathered in episodes. Whenever an actor

starts a new episode, it selects a state from the archive with a cell selection weight of:

W =
1

0.5Csteps + 1
(7)

where Csteps is the total number of steps the agent spend in the cell. This equation is different

from the one in the exploration-phase without a policy (0.5Csteps grows much faster than
√
Cseen)

because policy-based Go-Explore benefits from focusing more strongly on the most recently dis-

covered cells for two reasons: (1) after a new cell is discovered in policy-based Go-Explore the

policy may first need to learn how to return there reliably; focusing on new cells helps the agent

collect the necessary experience to do so, and (2) policy-based Go-Explore will visit many cells

along the way to a target cell, allowing it to explore from those intermediate cells without se-

lecting them explicitly (Extended Data Fig. 7). After a cell is selected, policy-based Go-Explore

runs its goal-conditioned policy to reach the selected state, which enables it to be applied with-

out assuming access to a deterministic or restorable environment during the exploration phase. It

is exceedingly difficult and practically unnecessary to reach a particular state exactly, so instead,

the policy is conditioned to reach the cell associated with this state, referred to as the goal cell,

provided to the policy in the form of a concatenated one-hot encoding for every attribute charac-

terizing the cell. Directly providing the goal cell to the goal-conditioned policy did not perform

well (SI “Ablations”), presumably because goal-conditioned policies tend to falter when goals be-

come distant36. Instead, the actor is iteratively conditioned on the successive cells traversed by the

archived trajectory that leads to the goal cell.

Here, we allow the agent to follow the archived trajectory in a soft-order, a method similar to

the one described in Guo et al. (2019)34. To prevent the soft-trajectory from being affected by

the time an agent spends in a cell, the algorithm first constructs a trajectory of non-repeated cells,

26

collapsing any consecutive sequence of identical cells into a single cell. Then, given a window

size Nw = 10, if the agent is supposed to reach a specific goal cell in this trajectory and it reaches

that or any of the subsequent 9 cells in this trajectory, the goal is considered met. When a goal

is met, the agent receives a trajectory reward rτt of 1 and the subsequent goal in the non-repeated

trajectory (i.e. the goal that comes after the cell that was actually reached) is set as the next goal.

When the cell that was reached occurs multiple times in the window (indicating cycles) the next

goal is the one that follows the last occurrence of this repeated goal cell.

When an agent reaches the last cell in the trajectory, it receives a trajectory reward rτt of 3, which

is higher than the intermediate trajectory reward of 1 to implement the general practice of having a

higher reward for reaching a desired final state than for completing any intermediate objectives65,66:

this practice improved performance (SI “Ablations”). Then the agent executes the “explore” step,

either through policy exploration or random exploration. With policy exploration, the agent will

select a goal for the policy according to one of three rules: (1) with 10% probability, randomly

select an adjacent cell (see “Exploration phase”) not in the archive, (2) with 22.5% probability,

select any adjacent cell, whether already in the archive or not, and (3), in the remaining 67.5%

of cases, select a cell from the archive according to the standard cell-selection weights. If the

first rule does not apply because all adjacent cells are already in the archive, rules 2 and 3 are

selected with proportionally scaled probabilities. Note that, in the exploration step, the agent is

presented directly with the goal, rather than with a trajectory. Whenever the current exploration

goal is reached, or if the goal is not reached for some number of steps (here 100), a new exploration

goal is chosen. With random exploration, the agent takes random actions according to the random

exploration procedure described in Methods “Exploration phase”. All gathered data is ignored

with respect to calculating the loss of the policy.

While following a trajectory or during exploration, it is possible for the agent to fail to make

progress towards the current goal cell because the policy has converged towards putting all its

probability mass on a small set of actions, meaning the policy performs insufficient exploration to

discover the goal and observe its reward. To alleviate this issue, in addition to having the entropy

bonus LENT , the policy is extended with an entropy term et that divides the logits of the policy

right before the softmax activation function is applied. If the agent fails to reach the current goal

for some number of steps eTt (defined below), this entropy term is increased following:

et(t̂) = 1 + (max(0, t̂− eTt) · ef)ep (8)

27

where t̂ is the number of steps the agent has taken since it last reached a goal (for returning) or

discovered a new cell (for exploring), ef = 0.01 is the entropy increase factor and ep = 2 is the

entropy increase power. While executing the “explore” step, the threshold eTt has a fixed value

of 50. While returning, the threshold eTt equals the number of actions that the followed trajectory

required to move from the previously reached goal cell to the current goal cell. Here, the previously

reached goal cell refers to the first cell in the soft-trajectory window that matched the cell occupied

by the agent at the time the previous goal was considered met.

Lastly, to prevent actors from spending many time steps without making any progress (possibly

because the agent reached a state from which further progress is impossible), we terminate the

episode early if the current goal is not reached within 1,000 steps after we have started to increase

entropy (while returning), or if no new cells are discovered for 1,000 steps (while exploring). For

Montezuma’s Revenge with policy-based Go-Explore only, we also terminate the episode on death

to deal with an ALE bug (details in Supplemental Information).

Robotics environment. The environment, from https://github.com/vikashplus/fetch, features a re-

alistic model67 of the Fetch Mobile Manipulator35 and was minimally modified to implement a

sparse-reward pick-and-place task. The modified environment is included with the Go-Explore

code.

References

48. Castro, P. S., Moitra, S., Gelada, C., Kumar, S. & Bellemare, M. G. Dopamine: A research

framework for deep reinforcement learning. arXiv preprint arXiv:1812.06110 (2018).

49. Toromanoff, M., Wirbel, E. & Moutarde, F. Is Deep Reinforcement Learning Really Super-

human on Atari? arXiv preprint arXiv:1908.04683 (2019).

50. Burda, Y., Edwards, H., Storkey, A. & Klimov, O. Exploration by random network distilla-

tion. arXiv preprint arXiv:1810.12894 (2018).

51. Choi, J. et al. Contingency-Aware Exploration in Reinforcement Learning. CoRR

abs/1811.01483 (2018).

52. Fedus, W., Gelada, C., Bengio, Y., Bellemare, M. G. & Larochelle, H. Hyperbolic discount-

ing and learning over multiple horizons. arXiv preprint arXiv:1902.06865 (2019).

28

https://github.com/vikashplus/fetch

53. Taiga, A. A., Fedus, W., Machado, M. C., Courville, A. & Bellemare, M. G. On Bonus Based

Exploration Methods In The Arcade Learning Environment in International Conference on

Learning Representations (2020).

54. Tang, Y., Valko, M. & Munos, R. Taylor expansion policy optimization. arXiv preprint

arXiv:2003.06259 (2020).

55. Ostrovski, G., Bellemare, M. G., van den Oord, A. & Munos, R. Count-Based Exploration

with Neural Density Models in ICML (2017).

56. Martin, J., Sasikumar, S. N., Everitt, T. & Hutter, M. Count-Based Exploration in Feature

Space for Reinforcement Learning in IJCAI (2017).

57. O’Donoghue, B., Osband, I., Munos, R. & Mnih, V. The Uncertainty Bellman Equation and

Exploration in ICML (2018).

58. Goldenberg, A., Benhabib, B. & Fenton, R. A complete generalized solution to the inverse

kinematics of robots. IEEE Journal on Robotics and Automation 1, 14–20 (1985).

59. Spong, M. W., Hutchinson, S., Vidyasagar, M., et al. Robot modeling and control (2006).

60. Zhao, Z.-Q., Zheng, P., Xu, S.-t. & Wu, X. Object detection with deep learning: A review.

IEEE transactions on neural networks and learning systems 30, 3212–3232 (2019).

61. Todorov, E., Erez, T. & Tassa, Y. MuJoCo: A physics engine for model-based control in

IROS (2012), 5026–5033.

62. Kocsis, L. & Szepesvári, C. Bandit Based Monte-Carlo Planning in ECML (2006).

63. Strehl, A. L. & Littman, M. L. An analysis of model-based interval estimation for Markov

decision processes. Journal of Computer and System Sciences 74, 1309–1331 (2008).

64. Tang, H. et al. # Exploration: A Study of Count-Based Exploration for Deep Reinforcement

Learning in NIPS (2017), 2750–2759.

65. Ng, A. Y., Harada, D. & Russell, S. Policy invariance under reward transformations: Theory

and application to reward shaping in ICML 99 (1999), 278–287.

66. Hussein, A., Gaber, M. M., Elyan, E. & Jayne, C. Imitation learning: A survey of learning

methods. ACM Computing Surveys (CSUR) 50, 1–35 (2017).

67. Plappert, M. et al. Multi-goal reinforcement learning: Challenging robotics environments

and request for research. arXiv preprint arXiv:1802.09464 (2018).

29

Data availability. The data that support the findings of this study (including the raw data for all

figures and tables in the manuscript, extended data and SI, as well as the demonstration trajectories

used in robustification) are available from the corresponding authors upon reasonable request.

Code availability. The Go-Explore code is available at: https://github.com/uber-research/go-

explore.

30

https://github.com/uber-research/go-explore
https://github.com/uber-research/go-explore

a Atari architecture.

Act.: Softmax

Filter size: 8

Stride: 4

Filter size: 4

Stride: 2

Filter size: 3

Stride: 1

Flatten

Input

Filters: 12

Shape: 80*105

C1

Filters: 64

Shape: 19*25

Act.: Relu

C2

Filters: 128

Shape: 8*11

Act.: Relu

C3

Filters: 128

Shape: 6*9

Act.: Relu

FC1

Size: 6912

FC2

Size: 800

Act.: Relu

Layer Norm

Fully connected:

Convolution:

GRU

Size: 800

st

vt

πt

b Robotics architecture.

Input

Size: 604

Fully connected:

st vt

FC1

Size: 256

Act.: Relu

FC2

Size: 128

Act.: Relu

Layer Norm

GRU

Size: 128

Output

Size: 9

Act.: None

πt

μt

σt

Size: 9

Act.: Exp

Input

Size: 604

st

FC1

Size: 256

Act.: Relu

FC2

Size: 128

Act.: Relu

Layer Norm

GRU

Size: 128

Output

Size: 9

Act.: None

πt

μt

σt

Size: 9

Act.: Exp

Input

Size: 604

st

FC1

Size: 256

Act.: Relu

FC2

Size: 128

Act.: Relu

Layer Norm

GRU

Size: 128
Output

Size: 1

Act.: None

c Policy­based Go­Explore architecture.

Act.: Softmax

Filter size: 8

Stride: 4

Filter size: 4

Stride: 2

Filter size: 3

Stride: 1

Flatten

Input

Filters: 12

Shape: 80*105

C1

Filters: 64

Shape: 19*25

Act.: Relu

C2

Filters: 128

Shape: 8*11

Act.: Relu

C3

Filters: 128

Shape: 6*9

Act.: Relu

FC1

Size: 307+6912

FC2

Size: 800

Act.: Relu

Layer Norm

Fully connected:

Convolution:

GRU

Size: 800

st

gt

vt

πt

Extended Data Figure 1: Neural network architectures. (a) The Atari architecture is based on
the architecture provided with the backward algorithm implementation. The input consists of the
RGB channels of the last four frames (re-scaled to 80 by 105 pixels) concatenated, resulting in 12
input channels. The network consists of 3 convolutional layers, 2 fully connected layers, and a
layer of Gated Recurrent Units (GRUs)68. The network has a policy head π(s|a) and a value head
V (s). (b) For the robotics problem, the architecture consists of two separate networks, each with
2 fully connected layers and a GRU layer. One network specifies the policy π(s|a) by returning a
mean µ and variance σ for the actuator torques of the arm and the desired position of each of the
two fingers of the gripper (gripper fingers are implemented as Mujoco position actuators61 with
kp = 104 and a control range of [0, 0.05]). The other network implements the value function V (s).
(c) The architecture for policy-based Go-Explore is identical to the Atari architecture, except that
the goal representation g is concatenated with the input of the first fully connected layer.31

a Exploration phase without domain knowledge.

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K

1M
Sc

or
e

Alien

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K

Amidar

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

Assault

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K

1M
Asterix

0.0 0.5 1.0 1.5 2.0
1e9

0

25K

50K

75K

100K

125K

150K

Asteroids

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K

Atlantis

0.0 0.5 1.0 1.5 2.0
1e9

1K

2K

3K

4K

BankHeist

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K

1M

Sc
or

e

BattleZone

0.0 0.5 1.0 1.5 2.0
1e9

0

100K

200K

300K

400K

500K
BeamRider

0.0 0.5 1.0 1.5 2.0
1e9

0

25K

50K

75K

100K

125K

Berzerk

0.0 0.5 1.0 1.5 2.0
1e9

100

150

200

250
Bowling

0.0 0.5 1.0 1.5 2.0
1e9

20

40

60

80

100
Boxing

0.0 0.5 1.0 1.5 2.0
1e9

0

200

400

600

800

Breakout

0.0 0.5 1.0 1.5 2.0
1e9

0

100K

200K

300K

400K

500K

600K

Centipede

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K

1M

Sc
or

e

ChopperCommand

0.0 0.5 1.0 1.5 2.0
1e9

50K

100K

150K

200K

250K

300K

350K
CrazyClimber

0.0 0.5 1.0 1.5 2.0
1e9

0

50K

100K

150K

200K

250K

DemonAttack

0.0 0.5 1.0 1.5 2.0
1e9

-10

0

10

20

DoubleDunk

0.0 0.5 1.0 1.5 2.0
1e9

500

1K

1.5K

2K

Enduro

0.0 0.5 1.0 1.5 2.0
1e9

-40

-20

0

20

40

60

80

FishingDerby

0.0 0.5 1.0 1.5 2.0
1e9

28

30

32

34
Freeway

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K

1M

Sc
or

e

Frostbite

0.0 0.5 1.0 1.5 2.0
1e9

0

25K

50K

75K

100K

125K

150K
Gopher

0.0 0.5 1.0 1.5 2.0
1e9

2K

4K

6K

8K

10K

12K

14K
Gravitar

0.0 0.5 1.0 1.5 2.0
1e9

20K

30K

40K

50K
Hero

0.0 0.5 1.0 1.5 2.0
1e9

0

10

20

30

IceHockey

0.0 0.5 1.0 1.5 2.0
1e9

0

50K

100K

150K

200K
Jamesbond

0.0 0.5 1.0 1.5 2.0
1e9

5K

10K

15K

20K

25K

30K
Kangaroo

0.0 0.5 1.0 1.5 2.0
1e9

0

20K

40K

60K

Sc
or

e

Krull

0.0 0.5 1.0 1.5 2.0
1e9

10K

20K

30K

40K

KungFuMaster

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K

25K

MontezumaRevenge

0.0 0.5 1.0 1.5 2.0
1e9

0

100K

200K

300K

400K

500K
MsPacman

0.0 0.5 1.0 1.5 2.0
1e9

0

50K

100K

150K

200K

NameThisGame

0.0 0.5 1.0 1.5 2.0
1e9

0

25K

50K

75K

100K

125K

150K
Phoenix

0 1 2 3 4 5
1e9

0

2K

4K

6K

8K

Pitfall

0.0 0.5 1.0 1.5 2.0
1e9

16

18

20

Sc
or

e

Pong

0.0 0.5 1.0 1.5
1e10

30K

40K

50K

60K

70K

80K
PrivateEye

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K

1M
Qbert

0.0 0.5 1.0 1.5 2.0
1e9

10K

20K

30K

40K
Riverraid

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K

1M
RoadRunner

0.0 0.5 1.0 1.5 2.0
1e9

0

25

50

75

100

125

Robotank

0.0 0.5 1.0 1.5 2.0
1e9

0

100K

200K

300K

400K

500K

Seaquest

0 1 2 3 4 5
1e9

-10K

-9K

-8K

-7K

-6K

-5K

-4K

Sc
or

e

Skiing

0.0 0.5 1.0 1.5 2.0
1e9

5K

10K

15K

20K

Solaris

0.0 0.5 1.0 1.5 2.0
1e9

0

20K

40K

60K

80K

SpaceInvaders

0.0 0.5 1.0 1.5 2.0
1e9

0

200K

400K

600K

800K
StarGunner

0.0 0.5 1.0 1.5 2.0
1e9

0

10

20

Tennis

0.0 0.5 1.0 1.5 2.0
1e9

0

50K

100K

150K

200K

TimePilot

0.0 0.5 1.0 1.5 2.0
Frames 1e9

100

200

300

400

500

600

700
Tutankham

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

100K

200K

300K

400K

500K

600K

Sc
or

e

UpNDown

0.0 0.5 1.0 1.5 2.0
Frames 1e9

1.5K

2K

2.5K

3K

Venture

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

200K

400K

600K

800K

1M
VideoPinball

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

50K

100K

150K

200K
WizardOfWor

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

200K

400K

600K

800K

1M
YarsRevenge

0.0 0.5 1.0 1.5 2.0
Frames 1e9

5K

10K

15K

20K

25K

Zaxxon

Avg. Human SOTA Go-Explore

b Exploration phase with domain knowledge (compared to downscaled).

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

50K

100K

150K

Sc
or

e

MontezumaRevenge

0 2 4
Frames 1e9

0

20K

40K

Pitfall
 Downscaled Domain Knowledge SOTA Avg. Human

Extended Data Figure 2: Maximum end-of-episode score found by the exploration phase on
Atari. Because only scores achieved at the episode end are reported, the plots for some games
(e.g. Solaris) begin after the start of the run, when the episode end is first reached. In (a), averaging
is over 50 runs for the 11 focus games and 5 runs for other games. In (b), averaging is over 100
runs. Shaded areas show 95% bootstrap CIs of the mean with 1,000 samples.

32

a Exploration phase without domain knowledge.

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

Nu
m

be
r o

f C
el

ls
Alien

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

Amidar

0.0 0.5 1.0 1.5 2.0
1e9

0

20K

40K

60K

80K

Assault

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K

Asterix

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

Asteroids

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K
Atlantis

0.0 0.5 1.0 1.5 2.0
1e9

0
2.5K

5K
7.5K
10K

12.5K

BankHeist

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

40K

50K

Nu
m

be
r o

f C
el

ls

BattleZone

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

40K

BeamRider

0.0 0.5 1.0 1.5 2.0
1e9

0

2.5K

5K

7.5K

10K

12.5K
Berzerk

0.0 0.5 1.0 1.5 2.0
1e9

0

2K

4K

6K

8K

10K
Bowling

0.0 0.5 1.0 1.5 2.0
1e9

0

2K

4K

6K

8K
Boxing

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K

25K
Breakout

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K
Centipede

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

40K

Nu
m

be
r o

f C
el

ls

ChopperCommand

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

CrazyClimber

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

40K
DemonAttack

0.0 0.5 1.0 1.5 2.0
1e9

0

2K

4K

6K

8K

10K
DoubleDunk

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

Enduro

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K
FishingDerby

0.0 0.5 1.0 1.5 2.0
1e9

0

2.5K

5K

7.5K

10K

12.5K
Freeway

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

Nu
m

be
r o

f C
el

ls

Frostbite

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K
Gopher

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K

25K
Gravitar

0.0 0.5 1.0 1.5 2.0
1e9

0

2K

4K

6K

Hero

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K

IceHockey

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

Jamesbond

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

Kangaroo

0.0 0.5 1.0 1.5 2.0
1e9

0

20K

40K

60K

Nu
m

be
r o

f C
el

ls

Krull

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

KungFuMaster

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K

25K
MontezumaRevenge

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K
MsPacman

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

NameThisGame

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K
Phoenix

0 2 4
1e9

0

2K

4K

6K

8K

10K
Pitfall

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

Nu
m

be
r o

f C
el

ls

Pong

0.0 0.5 1.0 1.5
1e10

0

2.5K

5K

7.5K

10K

12.5K

PrivateEye

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K
Qbert

0.0 0.5 1.0 1.5 2.0
1e9

0

2K

4K

6K

8K

Riverraid

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K
RoadRunner

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

40K
Robotank

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

40K
Seaquest

0 2 4
1e9

0

2K

4K

6K

8K

Nu
m

be
r o

f C
el

ls

Skiing

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

Solaris

0.0 0.5 1.0 1.5 2.0
1e9

0

5K

10K

15K

20K
SpaceInvaders

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K

StarGunner

0.0 0.5 1.0 1.5 2.0
1e9

0

2.5K

5K

7.5K

10K

Tennis

0.0 0.5 1.0 1.5 2.0
1e9

0

10K

20K

30K
TimePilot

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

10K

20K

30K

40K
Tutankham

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

5K

10K

15K

Nu
m

be
r o

f C
el

ls

UpNDown

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

5K

10K

15K

20K

Venture

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

10K

20K

30K

40K
VideoPinball

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

2K

4K

6K
WizardOfWor

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

10K

20K

YarsRevenge

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

5K

10K

15K

20K

25K
Zaxxon

b Exploration phase with domain knowledge.

0.00 0.25 0.50 0.75 1.00
Frames 1e9

0

20K

40K

60K

80K

Nu
m

be
r o

f C
el

ls

MontezumaRevenge

0.00 0.25 0.50 0.75 1.00
Frames 1e9

0

5K

10K

15K
Pitfall

Extended Data Figure 3: Number of cells in archive during the exploration phase on Atari.
In (a), archive size can decrease when the representation is recomputed. Previous archives are
converted to the new format when the representation is recomputed, possibly leading to an archive
larger than 50K. In this case, one iteration of the exploration phase runs and the representation is
recomputed again. Shaded areas show 95% bootstrap CIs of the mean with 1,000 samples.

33

a Exploration phase without domain knowledge.

0 2 4 6 8
1e9

0

50K

100K

150K

200K

Sc
or

e

Berzerk

0 2 4 6 8
1e9

0

50

100

150

200

250
Bowling

0 2 4 6 8
1e9

0

250K

500K

750K

1M

1.25M

Centipede

0 2 4 6 8
1e9

0

10

20

30

Freeway

0 2 4 6 8
1e9

0

2K

4K

6K

8K

10K

Sc
or

e

Gravitar

0 2 4 6 8
1e9

0

10K

20K

30K

40K

MontezumaRevenge

0 2 4 6 8
1e9

0

2K

4K

6K

Pitfall

0 2 4 6 8
1e9

0

20K

40K

60K

80K

100K
PrivateEye

0 2 4 6 8
Frames 1e9

-30K

-25K

-20K

-15K

-10K

-5K

0

Sc
or

e

Skiing

0.0 0.5 1.0 1.5
Frames 1e10

0

5K

10K

15K

20K

25K

Solaris

0 2 4 6 8
Frames 1e9

0

500

1K

1.5K

2K

2.5K

Venture

Avg. Human SOTA Go-Explore

b Exploration phase with domain knowledge.

0 2 4 6 8
Frames 1e9

0

250K

500K

750K

1M

1.25M

1.5M

Sc
or

e

MontezumaRevenge

0.00 0.25 0.50 0.75 1.00 1.25
Frames 1e10

0

20K

40K

60K

80K

100K

Sc
or

e

Pitfall
 Avg. Human SOTA Go-Explore

Extended Data Figure 4: Progress of robustification phase on Atari. Shown are the scores
achieved by robustifying agents across training time for the exploration phase (a) with represen-
tations informed by domain knowledge, and (b) representations without domain knowledge. In
particular, the rolling mean is shown of performance across the past 100 episodes when starting
from the virtual demonstration (which corresponds to the domain’s traditional starting state). Note
that in (a) averaging is over 5 independent runs, while in (b) averaging is over 10 runs. Because
the final performance is obtained by testing the highest-performing network checkpoint for each
run over 1,000 additional episodes, rather than directly extracted from the curves above, the per-
formance reported in Fig. 2b does not necessarily match any particular point along these curves
(Methods). Shaded areas show 95% bootstrap CIs of the mean with 1,000 samples.

34

a Runs with successful trajectories.

0.0 0.5 1.0 1.5 2.0
1e7

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Top Left

0.0 0.5 1.0 1.5 2.0
1e7

0%

20%

40%

60%

80%

100%
Top Right

0.0 0.5 1.0 1.5 2.0
Frames 1e7

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Bottom Left

0.0 0.5 1.0 1.5 2.0
Frames 1e7

0%

20%

40%

60%

80%

100%
Bottom Right

b Length of the shortest successful trajectory

1.0 1.5 2.0
1e7

52.5

55

57.5

60

62.5

65

67.5

Su
cc

es
s L

en
gt

h

Top Left

0.5 1.0 1.5 2.0
1e7

90

100

110

120

130

Top Right

0.5 1.0 1.5 2.0
Frames 1e7

50

55

60

65

70

Su
cc

es
s L

en
gt

h

Bottom Left

0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

110

120

130

140

150

160

170
Bottom Right

Extended Data Figure 5: Progress of the exploration phase in the robotics environment. In
(a), the exploration phase quickly achieves 100% success rate for all shelves in the robotics en-
vironment. However, (b) shows that while success is achieved quickly, it is useful to keep the
exploration phase running longer to reduce the length of the successful trajectories, thus making
robustification easier. Shaded areas show 95% bootstrap CIs of the mean with 1,000 samples.

35

mini-batch

map encounterd

states to cells

update

archive

update

model

actor

go to cellselect cell explore from cell

episode ends

cell reached

episode ends

new episode starts

actor

go to cellselect cell explore from cell

episode ends

cell reached

episode ends

new episode starts

actor

go to cellselect cell explore from cell

episode ends

cell reached

episode ends

new episode starts

Extended Data Figure 6: Policy-based Go-Explore overview. With respect to their practical im-
plementation, the main difference between policy-based Go-Explore and Go-Explore when restor-
ing simulator state is that in policy-based Go-Explore there exist separate actors that each have
an internal loop switching between the “select”, “go”, and “explore” steps, rather than one outer
loop in which the “select”, “go”, and “explore” steps are executed in synchronised batches. This
structure allows policy-based Go-Explore to be easily combined with popular RL algorithms like
A3C19, PPO20 or DQN15, which already divide data gathering over many actors.

36

a Montezuma’s Revenge

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Frames 1e10

0

2K

4K

6K

8K

10K

12K

C
el

ls
 fo

un
d

by
 m

et
ho

d

return
random
policy

b Pitfall

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e10

0

1K

2K

3K

4K

5K

6K

7K

8K

C
el

ls
 fo

un
d

by
 m

et
ho

d

return
random
policy

Extended Data Figure 7: Method by which cells are found. In both (a) Montezuma’s Revenge
and (b) Pitfall, sampling from the goal-conditioned policy results in the discovery of roughly four
times more cells than when taking random actions. At the start of training there is effectively
no difference between random actions and sampling from the policy, supporting the intuition that
sampling from the policy only becomes more efficient than random actions after the policy has
acquired the basic skills for moving towards the indicated goal. Lastly, the number of cells that are
discovered while returning is about twice that of the cells discovered when taking random actions
after returning, indicating that the frames spent while returning to a previously visited cell are not
just overhead required for moving towards the frontier of yet undiscovered states and training the
policy network, but actually provide a substantial contribution towards exploration as well. Shaded
areas show 95% bootstrap CIs of the mean with 1,000 samples.

37

a Parameters for PPO, SIL, and the backward algorithm.

Robustification Policy­Based
Parameter Atari Robotics Atari

Discount factor (γ) 0.999 0.99 0.99
N­step return factor (λ) 0.95 0.95 0.95

Num. workers 8 8 16
Num. actors per worker 32 + 2 SIL 120 + 8 SIL 15 + 1 SIL

Num. actors (N) 256 + 16 SIL 960 + 64 SIL 240 + 16 SIL
Steps per batch (T) 128 128 128

PPO Clip (ϵ) 0.1 0.1 0.1
PPO Epochs 4 4 4

Value coef. (wVF) 0.5 0.5 0.5
Ent. coef. (wENT) 10−5 10−5 10−4

L2 coef. (wL2) 10−7 10−7 10−7

SIL coef. (wSIL) 0.1 0.1 0.1
SIL ent. coef. (wSIL_ENT) 10−5 10−5 0
SIL value coef. (wSIL_VF) 0.01 0.1 0.01

Allowed lag 50 10 ­
Extra frame coef 7 4 ­
Move threshold 0.1 0.1 ­

Num. demonstrations 10 + 1 virtual 10 ­
SIL from start prob. 0.3 0 ­
Window size (frames) 160 40 ­

b Atari environment parameters

Parameter Value
Sticky actions True
Length limit 400K frames∗

End of episode All lives lost†

Action repeat (i.e. frame skip) 4
Frame max pool 2 or 4‡

Extended Data Table 1: Hyperparameters. (a) Parameters above the dividing line are applicable
to PPO with SIL, while parameters below the line are specific to the backward algorithm. “Al-
lowed lag” is the number of frames the agent may lag the demonstration before being considered
unsuccessful. When the agent matches the demonstration, it runs for additional frames, controlled
by “Extra frame coef” c: becXc (X ∼ U(0, 1)). Window size is the number of starting points below
the maximum starting point of the demonstration that the algorithm may start from. (b) For the
exploration phase when restoring simulator state, only “Max episode length”, “End of episode”,
and “Action repeat” apply. (*) OpenAI Gym default. (†) Except for Montezuma’s Revenge with a
return policy (Methods “Policy-based Go-Explore”). (‡) 4 for Gravitar and Venture.

38

a Position and velocity objects

Object
door1
door

elbow_flex_link
forearm_roll_link

gripper_link
head_camera_link

head_pan_link
head_tilt_link

l_gripper_finger_link
latch1
latch
obj0

r_gripper_finger_link
shoulder_lift_link
shoulder_pan_link
upperarm_roll_link

wrist_flex_link
wrist_roll_link

b Collision and bounding box objects

Object
DoorLR
DoorUR
Shelf
Table
door1
door

frameL1
frameL
frameR1
frameR

gripper_link
l_gripper_finger_link

latch1
latch
obj0

r_gripper_finger_link
world

Extended Data Table 2: Robotics state representation. Position and velocities of the objects in
(a) are included in the state representation for robotics. Collisions between any two objects in (b)
as well as whether each object is currently inside the bounding boxes for the table and shelves
are also included in the state representation. Objects are given by their MuJoCo61 entity names
in the source code for the environment. Door-related objects ending with a 1 correspond to the
lower door while door-related objects not ending with anything correspond to the upper door. The
frame objects are the unmovable wooden blocks situated on either side of the movable part of the
door. “L” and “R” correspond to “left” and “right” whereas “L” and “U” correspond to “lower”
and “upper”. The difference between “door” and “DoorUR” as well as “door1” and “DoorLR” is
that in each case the latter object corresponds to the entire door structure, including the frames,
while the former corresponds only to the movable part of the door. A link to the original source
code for the MuJoCo description files defining these entities is given in “Acknowledgements”, and
a link to the Go-Explore codebase containing our modified version is provided in Methods “Code
availability”.

39

Game Expl. Phase Robust. Phase SOTA Avg. Human Agent57
Alien 959,312 11,358 7,128 297,638
Amidar 19,083 3,092 1,720 29,660
Assault 30,773 13,759 742 67,213
Asterix 999,500 274,491 8,503 991,384
Asteroids 112,952 159,426 47,389 150,855
Atlantis 286,460 937,558 29,028 1,528,842
BankHeist 3,668 1,563 753 23,072
BattleZone 998,800 45,610 37,188 934,135
BeamRider 371,723 24,031 16,927 300,510
Berzerk 131,417 197,376 1,383 2,630 61,508
Bowling 247 260 69 161 251
Boxing 91 99 12 100
Breakout 774 637 31 790
Centipede 613,815 1,422,628 10,166 12,017 412,848
ChopperCommand 996,220 19,256 7,388 999,900
CrazyClimber 235,600 160,161 35,829 565,910
DemonAttack 239,895 133,030 1,971 143,161
DoubleDunk 24 23 ­16 24
Enduro 1,031 2,338 861 2,368
FishingDerby 67 49 ­39 87
Freeway 34 34 34 30 33
Frostbite 999,990 10,003 4,335 541,281
Gopher 134,244 26,123 2,413 117,777
Gravitar 13,385 7,588 3,906 3,351 19,214
Hero 37,783 50,142 30,826 114,736
IceHockey 33 14 1 64
Jamesbond 200,810 4,303 303 135,785
Kangaroo 24,300 13,982 3,035 24,034
Krull 63,149 9,971 2,666 251,997
KungFuMaster 24,320 44,920 22,736 206,846
MontezumaRevenge 24,758 43,791 11,618 4,753 9,352
MsPacman 456,123 9,901 6,952 63,994
NameThisGame 212,824 18,084 8,049 54,387
Phoenix 19,200 148,840 7,243 908,264
Pitfall 7,875 6,954 0 6,464 18,756
Pong 21 21 15 21
PrivateEye 69,976 95,756 26,364 69,571 79,716
Qbert 999,975 26,172 13,455 580,328
Riverraid 35,588 24,116 17,118 63,319
RoadRunner 999,900 67,962 7,845 243,026
Robotank 143 70 12 127
Seaquest 539,456 64,985 42,055 999,998
Skiing ­4,185 ­3,660 ­10,386 ­4,337 ­4,203
Solaris 20,306 19,671 3,282 12,327 44,200
SpaceInvaders 93,147 24,183 1,669 48,681
StarGunner 609,580 265,480 10,250 839,574
Tennis 24 23 ­8 24
TimePilot 183,620 32,813 5,229 405,425
Tutankham 528 288 168 2,355
UpNDown 553,718 193,520 11,693 623,806
Venture 3,074 2,281 1,916 1,188 2,624
VideoPinball 999,999 656,572 17,668 992,341
WizardOfWor 199,900 10,980 4,757 157,306
YarsRevenge 999,998 93,680 54,577 998,532
Zaxxon 18,340 25,603 9,173 249,809

Extended Data Table 3: Full scores on Atari. Go-Explore outperforms SOTA on all focus games
(Freeway’s score is at its maximum). The exploration phase similarly finds trajectories that fre-
quently exceed SOTA scores. Finally, Go-Explore outperforms Agent57 on 7 of the 11 focus
games, despite Go-Explore being evaluated in a harder environment. Agent57 was included be-
cause it is the only other algorithm that has achieved superhuman scores on all unsolved and
hard-exploration games, but it is listed separately because it was evaluated under easier, mostly
deterministic conditions (Methods “State of the art on Atari”).40

Supplementary Information

1. Algorithms . 42
2. Prior work on Montezuma’s Revenge . 45
3. Ablations . 45

3.1. Exploration phase without action repetition . 46
3.2. Exploration phase without dynamic representations . 46
3.3. Downscaling distribution minimum means . 49
3.4. Downscaling target proportion . 49
3.5. Downscaling sampling rate . 52
3.6. Domain-agnostic selection probabilities in Montezuma’s Revenge . 52
3.7. Robustification without imitation learning loss . 52
3.8. Policy-based Go-Explore without imitation learning loss . 52
3.9. Policy-based Go-Explore without a cell trajectory . 54
3.10. Policy-based Go-Explore final-cell reward . 57

4. Detachment and derailment . 58
4.1. Detachment . 58
4.2. Derailment . 59

5. Exploration in Atari . 61
6. Generality of downscaling . 63
7. Derailment in robotics . 64
8. Go-Explore and Quality-Diversity . 64
9. Go-Explore, Planning, and Model-based RL . 65
10. Go-Explore and Stochasticity . 67
11. Policy-based Go-Explore and Stochasticity . 69
12. Comparing Policy-based Go-Explore and DTSIL . 70
13. No-ops and sticky actions . 74
14. PPO and SIL . 74
15. Backward algorithm details . 76

15.1. Multiple demonstrations . 76
15.2. Reward scaling . 78

16. Score tracking in the exploration phase . 78
17. Robustification scores analysis . 79
18. Comparing Go-Explore and Agent57 . 79
19. ALE issues . 80
20. Infrastructure . 81

41

1 Algorithms This section presents pseudo-code for the algorithms presented in the main text.

Algorithm 1 Exploration Phase with Simulator Restoration.
1: Input: The archive sampling batch size K, the rollout length L, the starting state startingState, the initial repre-

sentation parameters rParams
2: (Optional) Input for dynamic representations: probability of adding frame to recent frames sample ps, max

archive size M , initial number of frames before recomputing representations F , interval between recomputing
representations I

3: Initialise archive A ← {} . {} represents an empty dictionary
4: A[REPRESENTATION(startingState, rParams)]← startingState
5: Initialise seen counts C ← {}
6: Initialise recent frame sample set S ← {}
7: frameCount← 0
8: while true do
9: if using dynamic representation and (|A| > M or frameCount > F) then

10: rParams← RECOMPUTEREPRESENTATION(S) . Compute representation parameters
based on the sample

11: S ← {}
12: F ← frameCount + I
13: end if
14: Sample batch of starting cells B ←WEIGHTEDSAMPLE(A, C, K)
15: for Cell s in B do
16: Restore environment state to s
17: seen← {}
18: for i in 0,...,L or until DONE do
19: a← RANDOMACTION() . Random action implements action repetition
20: Take action a and receive state si
21: frameCount← frameCount + 1
22: repr← REPRESENTATION(si, rParams) . If si is a done state, returns DONE
23: if repr not in A or ISBETTER(si, A[repr]) then . ISBETTER checks if si has a better score

or an equal score but shorter trajectory
24: A[repr]← si
25: end if
26: if repr not in seen then . C[repr] is the number of rollouts in which repr

was seen, so it can only increase once per rollout
27: C[repr]← C[repr] + 1
28: Add repr to seen
29: end if
30: if dynamic representation and RAND() < ps then
31: Add si’s frame to S . When S is at max size, oldest frame is evicted
32: end if
33: end for
34: end for
35: end while

42

Algorithm 2 Robustification Phase Rollout Worker.
1: Input: A set of demonstrations D, each a list of tuples (st, at, rt,donet); current starting point Sdemo for each

demonstration demo; the number of steps to initialise the RNN state K; the allowed lag of the agent compared to
the demonstration L; the extra frames coefficient C; the current policy π, which is updated by the PPO optimiser
process in the background

2: frameCountsDemo← [] . List of number of frames in episodes in which a demo was used
3: frameCountsVirtual← [] . List of number of frames processed in episodes with the virtual (NULL) demo
4: done← true
5: while true do
6: if done then
7: wd ← |D|/MEAN(frameCountsDemo) if frameCountsDemo is not empty else 1
8: wv ← 1/MEAN(frameCountsVirtual) if frameCountsVirtual is not empty else 1
9: pv ← wv

wd+wv

10: if using virtual demonstration and RAND() < pv then
11: demo← NULL
12: i← 0
13: si ← RESETENV() . Performs no-ops if appropriate
14: else
15: demo← RANDCHOICE(D)
16: i← max(0, Sdemo −K) . Set the current timestep to the demo starting point minus

the number of RNN initialisation steps
17: si ← RESTOREDEMO(demo, i) . Restore the environment to step i in the demo and return

the corresponding state
18: score← DEMOSCORE(demo, i)
19: remainingFrameCount← |demo| − i+ eC·RAND() . Give eC·RAND() extra training frames when the

policy matches the demo performance
20: end if
21: end if
22: if demo is NULL or i ≥ Sdemo then
23: Sample ai ∼ π(si, θ)
24: mi ← true . The transition can be used in training
25: else
26: ai ← DEMOACTION(d, i) . Replaying demo data to warm-up the RNN policy
27: mi ← false . The transition should be masked out in training
28: end if
29: si, ri, si+1,done← STEP(ai, stochastic=mi) . Replay transitions cannot be stochastic
30: score← score + ri
31: Send the transition (si, ai, ri, si+1,done,mi) to the optimizer
32: if demo is not NULL and not done then
33: remainingFrameCount← remainingFrameCount− 1

. With negative rewards we must consider all demo scores from frame i− L to i+ L to check for lag
34: lagging← score < min(DEMOSCORES(demo, i− L, i+ L))
35: done← remainingFrameCount < 0 or lagging
36: end if
37: i← i+ 1
38: if done and demo is not NULL then
39: Append i−max(0, Sdemo −K) to frameCountsDemo

. The optimiser modifies Sdemo based on the success rate following the logic in Salimans & Chen (2018)
40: Report a success for demo at Sdemo if score ≥ DEMOSCORE(demo, |demo|) or a failure otherwise
41: else if done then
42: Append i to frameCountsVirtual
43: end if
44: end while

43

Algorithm 3 Policy-based Go-Explore.
1: Input: The environment E, initial state startingState, the reward for reaching the final goal rG, the reward for

reaching an intermediate goal rg , the maximum steps without progress T̂ , and initial policy parameters θ

2: Initialise archive A ← {} . {} represents an empty dictionary
3: A[REPRESENTATION(startingState)]← (reward = 0, visits = 0, trajectory = [])
4: while true do
5: G← SELECTCELL(A) . Selects final goal from archive according to visit counts
6: τ ← A[G].trajectory
7: mode← return
8: s← RESET(E) . Resets the environment and obtains the initial state
9: c← REPRESENTATION(s) . Extracts cell representation from state

10: done← False
11: τ ′ ← [] . τ ′ tracks the cell trajectory for this episode
12: R← 0 . R tracks the total undiscounted reward for this episode
13: e← 1 . Initialise entropy to 1
14: t̂← 0 . Initialise time-out counter to 0
15: while not done do
16: if mode = return then
17: g ← GETNEXTGOAL(τ, c) . Determines next goal based on soft-trajectory
18: else if mode = exploreFromPolicy then
19: g ← GETEXPLORATIONGOAL(A, c, g) . Goal updates when reached or after 100 steps
20: end if
21: if mode = exploreRandom then
22: a← RANDOMACTION() . Random action implements action repetition
23: else
24: Sample a ∼ πθ(s, g, e) . Logits of πθ(s, g) are divided by entropy e before softmax is applied
25: end if
26: s, re,done← STEP(E, a) . Returns new state, environment reward, and episode end flag
27: c← REPRESENTATION(s); t̂← t̂+ 1
28: rτ ← 0 . rτ is the trajectory reward
29: if mode = return then
30: if c = G then . The final goal was reached
31: rτ ← rG; t̂← 0
32: mode← RANDSELECT(exploreRandom, exploreFromPolicy)
33: else if c = g then . The current sub-goal was reached
34: rτ ← rg; t̂← 0
35: end if
36: else if c /∈ A then
37: t̂← 0
38: end if
39: e← UPDATEENTROPY(t̂) . See equation 8
40: done← done ∨ t̂ ≥ T̂ . Terminate early if no progress is made for too long
41: τ ′ ← APPEND(τ ′, c); R← R+ re

. In practice, the steps below are performed in batches to enable parallelization
42: θ ← UPDATEMODEL(θ, s, a, re, rτ) . θ updated following standard PPO procedure
43: if c /∈ A or BETTER((R, τ ′),A[c]) then . Cell is added to archive if new, higher reward, or shorter
44: A[c].reward← R; A[c].trajectory← τ ′

45: end if
46: A[c].visits← A[c].visits + 1
47: end while
48: end while

44

2 Prior work on Montezuma’s Revenge Supplementary Table 1 provides the referenced list of

algorithms shown in Figure 2a of the main text. In cases where the work introducing the algorithm

was first released as a pre-print and later formally published, the date of the pre-print is used (to

better convey the historical sequencing), but the published version is given in the references.

3 Ablations For the ablations and parameter analyses presented in this section, data comes from

the main experiment where available. Other than the parameter or setting being varied, the only

Algorithm Time of publication Score
2BFS17 Jul 2015 540
A3C-CTS1 Jun 2016 1,127
A3C19 Feb 2016 67
Agent5713 Apr 2020 9,352
Ape-X27 Mar 2018 2,500
BASS64 Nov 2016 238
Brute69 Jul 2015 2,500
C5170 Jul 2017 0
DDQN71 Sep 2015 42
DeepCS72 Jun 2018 3,500
DQN-CTS1 Apr 2017 4,638
DQN-PixelCNN55 Jun 2016 3,705
DQN15 Mar 2017 2,514
DTSIL34 Feb 2015 50
Duel. DQN73 Nov 2015 22
ES74 Mar 2017 0
Feature-EB56 May 2017 2,745
Gorila75 Jul 2015 84
IMPALA28 Feb 2018 0
Linear26 Jul 2012 10.7
MIME76 Jan 2020 7,000*
MP-EB77 Jul 2015 0
MuZero78 Nov 2019 57
NGU79 Feb 2020 16,800*
Pellet80 Jul 2019 2500
POER81 May 2019 7,000*
Pop-Art30 Feb 2016 0
PPO+CoEX51 Nov 2018 11,540
Prior. DQN82 Nov 2015 13
R2D283 Oct 2018 2,061
Rainbow84 Oct 2017 154
Reactor85 Apr 2017 2,643.5
RND50 Oct 2018 11,347
SARSA86 Jul 2012 259
SIL37 Jun 2018 2,500
UBE87 Sep 2017 2,750*

Supplementary Table 1: Scores on Montezuma’s Revenge for the algorithms shown in Figure
2a of the main paper. Scores marked with an asterisk were estimated from a graphical represen-
tation.

45

difference between the main experiment and its ablations is that the main experiment sometimes

includes a larger number of independent runs. The number of runs for each treatment is specified

in the caption of the corresponding figure.

3.1 Exploration phase without action repetition As explained in Methods “Exploration phase”,

actions are repeated with high probability during the exploration step. Action repetition allows

agents to explore in a well-defined direction instead of dithering in place, analogously to existing

temporally correlated exploration methods88,89. Indeed, nearly all deep reinforcement learning

methods perform such directed exploration by default due to the correlation of neural network

outputs across nearby frames. Supplementary Fig. 1 shows that both Atari (in most games) and

robotics benefit significantly from action repetition, but that in both cases Go-Explore compares

favourably to the state of the art and the PPO control without action repetition.

3.2 Exploration phase without dynamic representations As detailed in Methods “Downscaling

on Atari”, the downscaling parameters for the variant of Go-Explore without domain knowledge

are updated dynamically (i.e. automatically) throughout exploration for each game by Go-Explore.

Supplementary Fig. 2 compares dynamically discovered representations to a fixed representation

optimised for Montezuma’s Revenge. The fixed representation performs well on Montezuma’s

Revenge, Centipede and possibly Private Eye (where the drop in performance is not statistically

significant), but fails to generalise to other games, often catastrophically so. This reduction in per-

formance is due to the two pathologies described in Methods “Downscaling on Atari”: producing

an excessive number of cells (Berzerk and Solaris) or producing too few cells (Bowling, Freeway,

Gravitar, Pitfall and Venture). It may not be obvious from Supplementary Fig. 2b that the fixed

representation in Pitfall produces too few cells, but the regular changes in representation in the

dynamic variant increase the effective number of cells over time beyond the number at any given

time.

Per the evaluation method (Methods “Evaluation”), scores in Supplementary Fig. 2a are recorded

at the end of episodes. In Solaris with fixed downscaling, so many cells are produced close to the

starting point that exploration focuses on the start of the game and never produces trajectories long

enough to reach the end of episode (i.e. the agent never makes it to a place in the game where it can

die), resulting in no line being shown. The maximum score regardless of episode end averages to

744 (CI: 640 – 888), far less than with dynamic downscaling. In Venture with fixed downscaling,

so few cells are created and rewards are so sparse that trajectories have difficulty being extended

(as longer trajectories are only produced if they lead to a new cell or a higher total score), so that

46

0 1 2
1e9

0

50K

100K

Sc
or

e

Berzerk

0 1 2
1e9

100

200

Bowling

0 1 2
1e9

0

500K

1M
Centipede

0 1 2
1e9

10

20

30

Freeway

0 1 2
1e9

5K

10K

15K

Sc
or

e

Gravitar

0 1 2
1e9

0

10K

20K

MontezumaRevenge

0 1 2
1e9

0

2K

4K

6K

Pitfall

0 1 2
Frames 1e9

0

20K

40K

60K

PrivateEye

0 1 2
Frames 1e9

-10K

-8K

-6K

Sc
or

e

Skiing

0 1 2
Frames 1e9

10K

20K

Solaris

0 1 2
Frames 1e9

0

1K

2K

3K
Venture

 With Repetition No Repetition Avg. Human SOTA

(a) Exploration phase scores in the 11 Atari focus games.

0.0 0.5 1.0
1e8

0%

50%

100%

Su
cc

es
s R

at
e

Top Left

0.0 0.5 1.0
1e8

0%

50%

100%
Top Right

0.0 0.5 1.0
Frames 1e8

0%

50%

100%

Su
cc

es
s R

at
e

Bottom Left

0.0 0.5 1.0
Frames 1e8

0%

50%

100%
Bottom Right

 With Repetition No Repetition

(b) Exploration phase success rates in the
robotics environment.

0.0 0.5 1.0
1e8

0

100

200
Nu

m
be

r o
f C

el
ls

Top Left

0.0 0.5 1.0
1e8

0

500

1K

Top Right

0.0 0.5 1.0
Frames 1e8

0

100

200

Nu
m

be
r o

f C
el

ls

Bottom Left

0.0 0.5 1.0
Frames 1e8

0

500

1K

Bottom Right

 With Repetition No Repetition Approx. Solved

(c) Cells discovered by the exploration
phase in the robotics environment.

Supplementary Figure 1: Exploration phase performance with and without action repetition.
In Atari, action repetition is generally helpful or neutral, with the notable exception of Centipede,
in which it significantly hurts exploration phase performance (though performance on Centipede is
very high even with action repetition). In the robotics environment, the benefit of action repetition
is large, as the variant without action repetition does not reach a 100% success rate after 100 million
frames, 5 times more than was given to the variant with repetition. Though action repetition has a
large positive effect on many Atari games and in robotics, even without repetition the exploration
phase surpasses state-of-the-art performance in most of the Atari games included in this ablation
experiment and greatly outperforms the 0% success rate of the intrinsically motivated PPO control
in robotics (main text Fig. 4c). Shaded areas show 95% bootstrap CIs of the mean with 1,000
samples. In (a), averaging is over 50 runs per game with repetition and 5 runs per game without
repetition. In (b) and (c), averaging is over 100 runs per target shelf with repetition and 10 runs per
target shelf without repetition.

47

0 1 2
1e9

0

50K

100K

Sc
or

e

Berzerk

0 1 2
1e9

100

200

Bowling

0 1 2
1e9

0

500K

1M
Centipede

0 1 2
1e9

28

30

32

34
Freeway

0 1 2
1e9

5K

10K

15K
Sc

or
e

Gravitar

0 1 2
1e9

0

10K

20K

30K

MontezumaRevenge

0 1 2
1e9

0

2K

4K

6K

Pitfall

0 1 2
Frames 1e9

40K

60K

PrivateEye

0 1 2
Frames 1e9

-10K

-8K

-6K

Sc
or

e

Skiing

0 1 2
Frames 1e9

10K

20K

Solaris

0 1 2
Frames 1e9

2K

3K
Venture

 Dynamic Downscaling Fixed Downscaling Avg. Human SOTA

(a) Exploration phase scores in the 11 Atari focus games. In Pitfall, the score with fixed downscaling remains
at 0, overlapping with the SOTA line. The peculiarities of the Solaris and Venture plots are explained in SI
“Exploration phase without dynamic representations”.

0 1 2
1e9

0

5M

10M

Nu
m

be
r o

f C
el

ls

Berzerk

0 1 2
1e9

0

5K

10K
Bowling

0 1 2
1e9

0

10K

20K
Centipede

0 1 2
1e9

0

5K

10K

Freeway

0 1 2
1e9

0

10K

20K

Nu
m

be
r o

f C
el

ls

Gravitar

0 1 2
1e9

0

25K

50K

75K
MontezumaRevenge

0 1 2
1e9

0

5K

10K
Pitfall

0 1 2
Frames 1e9

0

100K

200K

PrivateEye

0 1 2
Frames 1e9

0

2.5K

5K

7.5K

Nu
m

be
r o

f C
el

ls

Skiing

0 1 2
Frames 1e9

0

1M

2M

3M
Solaris

0 1 2
Frames 1e9

0

10K

20K

Venture

 Dynamic Downscaling Fixed Downscaling

(b) Cells discovered by the exploration phase in the 11 Atari focus games.

Supplementary Figure 2: Exploration phase performance with a fixed vs. dynamically discov-
ered representation. The fixed representation was optimised for Montezuma’s Revenge. (a) The
use of a fixed representation greatly hinders performance in the vast majority of the tested games
for which the representation was not optimised. (b) The two pathologies of fixed representations
can clearly be seen: producing an excessive number of cells (Berzerk and Solaris) and producing
too few cells (Bowling, Freeway, Gravitar and Venture). Shaded areas show 95% bootstrap CIs of
the mean with 1,000 samples. Averaging is over 50 runs per game with dynamic downscaling and
5 runs per game without dynamic downscaling.

48

the end of an episode (i.e. the agent dying) is only reached after around 1.6 billion frames have

been processed.

3.3 Downscaling distribution minimum means During the randomised search for downscaling

parameters (Methods “Downscaling on Atari”), parameters are sampled from a geometric distribu-

tion whose mean is the current best value of the parameter. The use of the geometric distribution

captures the intuition that lower parameter values need to be over-sampled compared to larger

values because they produce representations that are more different from each other, i.e. a down-

scaling with a width of 100 is unlikely to produce an aggregation that is very different from one

with a width of 101, while representations with width 1 and 2 are likely to be very different from

each other. The geometric distribution was thus chosen as a way to sample low values with higher

probabilities. If the current best known value for a parameter is very low, however, it may become

virtually impossible for larger values to ever be sampled. As a result, we define a minimum mean

for each parameter. These are set to approximately 1/20th of the maximum value the parameter can

take (8 for width, 10.5 for height, and 12 for depth).

It is reasonable to wonder whether the minimum means have a strong effect on the performance

of the exploration phase of Go-Explore, or whether they merely serve to avoid the collapse to low

values described above and can be set to a wide range of values. In Supplementary Fig. 3, we

show that the algorithm is robust to values ranging from 1/40th to 1/10th of the maximum, with

no value producing qualitatively different results from the original relative to average human and

state-of-the-art performance.

3.4 Downscaling target proportion The search for downscaling parameters aims to produce a

target number of cells given a buffer of sample frames (Methods “Downscaling on Atari”). This

target number of cells is a fraction of the number of frames in the buffer, set to 12.5% in our

implementation (i.e. targeting one cell for every 8 frames in the buffer). Because the target fraction

affects the number of cells created in the archive, which could affect exploratory behaviour, we

tested how sensitive the exploratory process is to its value.

In Supplementary Fig. 4, we show that good performance is achieved with values ranging from

5% to 20%, and thus that this parameter does not require excessive fine-tuning. With the exception

of Freeway with 5%, all values achieve the same or better qualitative results as the original in terms

of performance relative to average human and state-of-the-art performance.

49

0 1 2
1e9

0

50K

100K

Sc
or

e

Berzerk

0 1 2
1e9

100

200

Bowling

0 1 2
1e9

0

250K

500K

750K
Centipede

0 1 2
1e9

27.5

30

32.5

Freeway

0 1 2
1e9

5K

10K

15K

Sc
or

e

Gravitar

0 1 2
1e9

0

20K

40K
MontezumaRevenge

0 1 2
1e9

0

2K

4K

6K

Pitfall

0 1 2
Frames 1e9

40K

60K

80K

PrivateEye

0 1 2
Frames 1e9

-10K

-8K

-6K

-4K

Sc
or

e

Skiing

0 1 2
Frames 1e9

20K

40K

Solaris

0 1 2
Frames 1e9

1K

2K

3K

Venture

 Original
Avg. Human

Max / 10
SOTA

Max / 15 Max / 20 Max / 25 Max / 30 Max / 40

Supplementary Figure 3: Exploration phase performance with different values of the mini-
mum means. The effect of these values is small and statistically insignificant for the vast majority
of values and games, with rare exceptions (most notably “Max / 10” and “Max / 15” get signifi-
cantly worse results on Montezuma’s Revenge and Centipede; p < 0.05 according to a two-sample
empirical bootstrap test with 10,000 samples). Shaded areas show 95% bootstrap CIs of the mean
with 1,000 samples. Averaging is over 50 runs per game for the original minimum means and 5
runs per game for other values.

50

0 1 2
1e9

0

50K

100K

Sc
or

e

Berzerk

0 1 2
1e9

100

200

Bowling

0 1 2
1e9

0

250K

500K

750K

Centipede

0 1 2
1e9

27.5

30

32.5

Freeway

0 1 2
1e9

5K

10K

15K

Sc
or

e

Gravitar

0 1 2
1e9

0

20K

40K
MontezumaRevenge

0 1 2
1e9

0

2K

4K

6K

Pitfall

0 1 2
Frames 1e9

40K

60K

80K
PrivateEye

0 1 2
Frames 1e9

-10K

-8K

-6K

-4K

Sc
or

e

Skiing

0 1 2
Frames 1e9

10K

20K

30K

Solaris

0 1 2
Frames 1e9

1K

2K

3K
Venture

 5.0%
Avg. Human

7.5%
SOTA

10.0% 12.5% (original) 15.0% 17.5% 20.0%

Supplementary Figure 4: Exploration phase performance with different target cell propor-
tions. High-quality results are achieved across all values for all games (except Freeway at 5%).
While results within any target cell proportion are high-performing, sparse reward games such as
Freeway, Montezuma, PrivateEye, and Solaris tend to benefit more from a larger target cell propor-
tion, while dense reward games like Berzerk and Centipede tend to benefit from a smaller target
proportion. These results suggest that producing more cells favours exploration, while producing
fewer cells favours exploitation, perhaps because more time is spent expanding high-scoring tra-
jectories rather than newly-found cells. Shaded areas show 95% bootstrap CIs of the mean with
1,000 samples. Averaging is over 50 runs per game for the original 12.5% value and 5 runs per
game for other values.

51

3.5 Downscaling sampling rate Downscaling hyperparameters are found through a search pro-

cess over a sample of frames discovered during exploration. Because the buffer has a limited size

and to ensure that it contains diverse frames, frames are added to the buffer probabilistically ac-

cording to a sampling rate of 1% (Methods “Downscaling on Atari”). The sampling rate effectively

controls the tradeoff between having a more diverse set of frames in the buffer (if it is low) or a set

of more recent frames (if it is high). In this experiment we investigate whether the performance of

the exploration phase is strongly sensitive to this hyperparameter.

In Supplementary Fig. 5, we analyse sampling rates ranging from 0.3% (because the buffer is

cleared every 10 million actions – the frequency at which the representation is recomputed – and

contains 10,000 frames, frequencies less than or equal to 0.1% are likely to not always fill the

buffer completely) to 10%. We find that the sampling rate generally does not have a large effect on

results, though the higher sampling rate of 10% does tend to produce lower performance relative to

the original value of 1% (the difference is statistically significant in Berzerk, Centipede, Gravitar

and Venture; p < 0.05 according to a two-sample empirical bootstrap test with 10,000 samples),

supporting the usefulness of increasing buffer diversity through sampling.

3.6 Domain-agnostic selection probabilities in Montezuma’s Revenge As explained in Methods

“Exploration phase”, a custom cell selection probability that makes use of domain knowledge is

used for Montezuma’s Revenge with domain knowledge. Supplementary Fig. 6 shows that this

selection probability greatly speeds up the exploration phase in that context, but that even with

the generic selection probability, Go-Explore still solves the entire game when using a domain

knowledge cell representation.

3.7 Robustification without imitation learning loss As mentioned in Sec. “PPO and SIL”, a loss

inspired by self-imitation learning37 (the “SIL loss”) is added during the robustification phase of

Go-Explore. Supplementary Fig. 7 shows the effect of the SIL loss on the Atari games Mon-

tezuma’s Revenge and Pitfall as well as on the robotics environment. SIL provides an early lift in

robustifying Montezuma’s Revenge and may provide a slight overall boost in both games, though

its effect by the end of training is not statistically significant at the 95% level in either Montezuma’s

Revenge or Pitfall, according to a two-sample empirical bootstrap test. In robotics, the effect of the

SIL loss is drastic: without SIL, no robustification run was able to succeed after 1 billion frames,

whereas the success rate with SIL at 1 billion frames across all target shelves is 96.5%.

3.8 Policy-based Go-Explore without imitation learning loss Similar to the robustification phase,

policy-based Go-Explore implements a Self-Imitation Learning (SIL) loss. Removing the SIL loss

52

0 1 2
1e9

0

50K

100K

Sc
or

e

Berzerk

0 1 2
1e9

100

200

Bowling

0 1 2
1e9

0

200K

400K

600K

Centipede

0 1 2
1e9

28

30

32

34
Freeway

0 1 2
1e9

5K

10K

15K

Sc
or

e

Gravitar

0 1 2
1e9

0

20K

40K
MontezumaRevenge

0 1 2
1e9

0

2K

4K

6K

Pitfall

0 1 2
Frames 1e9

40K

60K

80K

PrivateEye

0 1 2
Frames 1e9

-10K

-8K

-6K

-4K

Sc
or

e

Skiing

0 1 2
Frames 1e9

10K

20K

30K
Solaris

0 1 2
Frames 1e9

1K

2K

3K
Venture

 0.3% 1% (original)
Avg. Human

3.0%
SOTA

10.0%

Supplementary Figure 5: Exploration phase performance with different frame sampling rates.
While the sampling rate does not have a large effect overall (and does not change the qualitative
result of Go-Explore producing advances over humans and state-of-the-art algorithms), as a gen-
eral trend, larger values (and in particular the largest value in this experiment, 10%) tend to have
reduced performance, highlighting the importance of diversity rather than recency in the sample
buffer. Shaded areas show 95% bootstrap CIs of the mean with 1,000 samples. Averaging is over
50 runs per game for the original 1% value and 5 runs per game for other values.

53

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e9

0

20K

40K

60K

80K

100K

120K

140K

160K
Sc

or
e

Domain Knowledge Selection
Domain Agnostic Selection

Avg. Human
SOTA

(a) Exploration phase score in
Montezuma’s Revenge with do-
main knowledge.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e9

0

20K

40K

60K

80K

Nu
m

be
r o

f C
el

ls

Domain Knowledge Selection
Domain Agnostic Selection

(b) Cells discovered by the ex-
ploration phase in Montezuma’s
Revenge with domain knowl-
edge.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e9

0

3

6

9

12

15

18

Le
ve

l

Domain Knowledge Selection
Domain Agnostic Selection

Solved

(c) Levels solved by the ex-
ploration phase in Montezuma’s
Revenge with domain knowl-
edge.

Supplementary Figure 6: Exploration phase on Montezuma’s Revenge with domain knowledge
with and without a cell selection probability that makes use of domain knowledge. Making
use of domain knowledge in cell selection probability greatly speeds up exploration, especially in
the later stages. However, even without a game-specific cell selection probability, the exploration
phase quickly exceeds the state of the art, makes consistent (though slower) progress, and eventu-
ally solves level 3 and thus the entire game. Shaded areas show 95% bootstrap CIs of the mean
with 1,000 samples. Averaging is over 100 runs with domain knowledge selection and 10 runs
with domain agnostic selection.

substantially reduces the performance of policy-based Go-Explore on both Montezuma’s Revenge

and Pitfall, at least over the first 2 billion frames (Supplementary Fig. 8). It is unclear why the SIL

loss has such a clear benefit for policy-based Go-Explore on Atari while it does not have a clear

benefit when robustifying Atari. One possible explanation is that the SIL loss mostly helps when

learning how to reach difficult to reach states. Policy-based Go-Explore benefits because, without

SIL, it only obtains experience on how to reach a difficult to reach state when the policy is actually

able to return to such a state. In robustification, on the other hand, the agent is regularly started near

these difficult to reach states, meaning it is much more likely to gather new experience that reaches

these states, and thus obtains less benefit from imitating the experience from the demonstration.

3.9 Policy-based Go-Explore without a cell trajectory A prominent feature of policy-based Go-

Explore is that the goal-conditioned policy is provided with a cell-by-cell trajectory towards the

target cell. In principle, it should be possible to train a goal-conditioned policy to move directly

towards the target cell, without providing the intermediate trajectory. However, the ablation that re-

moves this cell trajectory demonstrates that policy-based Go-Explore performs substantially worse

without the trajectory on both Montezuma’s Revenge and Pitfall, even to the extent that policy-

54

0 2 4 6 8
Frames 1e9

0

10K

20K

30K

40K

50K

Sc
or

e

MontezumaRevenge

0 2 4 6 8
Frames 1e9

0

2K

4K

6K

Sc
or

e

Pitfall

With SIL
No SIL

Avg. Human
SOTA

(a) Robustification score for
Montezuma’s Revenge and Pit-
fall.

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0%

20%

40%

60%

80%

100%
Top Right

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e9

0%

20%

40%

60%

80%

100%
Bottom Right

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Top Left

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e9

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Bottom Left

With SIL No SIL

(b) Robustification success rate for robotics.

Supplementary Figure 7: Robustification with and without the Self Imitation Learning (SIL)
loss. (a) In Montezuma’s Revenge, the SIL loss provides an early lift. In Pitfall, the SIL loss
appears to provide some benefit, though in neither case is the improvement statistically significant.
(b) In robotics, the benefit of the SIL loss is very large: without SIL no robustification process
was able to succeed after 1 billion frames, while the overwhelming majority of runs succeed in
the same amount of time when the SIL loss is included. Shaded areas show 95% bootstrap CIs
of the mean with 1,000 samples. In (a) averaging is over 5 runs per game and per variant. In (b),
averaging is over 50 runs per target shelf with SIL, and 5 runs per target shelf without SIL.

55

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

5K

10K

15K

20K

25K

A
ve

ra
ge

 re
w

ar
d

Montezuma's Revenge

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

2K

4K

6K

8K

10K Pitfall
With SIL Without SIL

Supplementary Figure 8: Policy-based Go-Explore with and without the Self Imitation Learn-
ing (SIL) loss. The SIL loss provides substantial increases in terms of average score on both
Montezuma’s Revenge and Pitfall. Shaded areas show 95% bootstrapped confidence intervals of
the mean with 1,000 samples. Each line is averaged over 10 runs with independent seeds.

based Go-Explore is unable to find any reward in Pitfall (Supplementary Fig. 9). The reason is

that, without the intermediate trajectory, returning to a far-away cell is itself a sparse reward prob-

lem. Initially, the agent will visit cells near the starting position purely by random exploration.

Over time, the agent will learn how to visit those cells intentionally when they are provided to the

goal-conditioned policy as a target. From there, the agent will discover new cells that are farther

away from the starting point. However, when being trained to return to these farther away cells,

the agent has to find those cells from the start, and is not provided with any gradient towards those

cells. Imagine that the agent has mostly explored the first room in Montezuma’s Revenge and now

discovers its first cell in the next room. The representation of this new cell has [room = 2, x = 0)],

but it was discovered from a cell with [room = 1, x = 20]. At this point, there is no way for the

policy to know that, in order to reach the target with [room = 2, x = 0], it has to first execute the

policy towards [room = 1, x = 20] (in fact, the policy is much more likely to execute the actions

towards [room = 1, x = 0] instead, because room was never a relevant feature before). As such,

the agent has to rely on the occasional random actions from the stochastic policy to rediscover the

cell in the next room and obtain the experience necessary to learn how to reach it. Both the SIL loss

(which replays the experience of discovering the cell) and the cell trajectory help in alleviating the

problem, and their impact on performance is similar (compare Supplementary Fig. 8 and Supple-

56

mentary Fig. 9), but both are required to really improve performance. Other solutions could be to

develop techniques that explicitly teach the agent to generalise to new cells or to provide rewards

for following the trajectory, even if the policy does not get to observe the intermediate cells.

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

5K

10K

15K

20K

25K

A
ve

ra
ge

 re
w

ar
d

Montezuma's Revenge

0.0 0.5 1.0 1.5 2.0
Frames 1e9

0

2K

4K

6K

8K

10K Pitfall
With cell trajectory Without cell trajectory

Supplementary Figure 9: Policy-based Go-Explore with and without a trajectory of cells. The
results suggest that the trajectory of cells is essential for obtaining high average cumulative re-
wards in both Montezuma’s Revenge and Pitfall. Shaded areas show 95% bootstrapped confidence
intervals of the mean with 1,000 samples. Each line is averaged over 10 runs with independent
seeds.

3.10 Policy-based Go-Explore final-cell reward To implement the general practice of having a

higher reward for reaching a desired final state than for completing any intermediate objectives65,66,

we provide a higher reward for reaching the final cell in a trajectory than for reaching any of the in-

termediate cells. Doing so encourages the goal-conditioned policy to shorten its trajectory towards

the final cell of a trajectory, thus resulting in more efficient behaviour. To demonstrate the effect

of this increased final reward, we ran experiments for different values of the final reward, ranging

from 1 (equal to the intermediate cell reward) through 5 (5 times higher than the intermediate cell

reward). The experiments were performed on Montezuma’s Revenge for 2 billion frames, with 10

random seeds for each parameter value.

The best values for the final reward (i.e. 3 and 5) result in increased performance, but all choices

result in the continuous discovery of new cells and increasing performance over time (Supplemen-

tary Fig. 10). It is unclear why certain values perform better than others. It is possible that the final

57

reward influences which in-game rewards are collected by the agent, thus affecting both explo-

ration and average reward, or that the results are statistical noise due to the relatively small number

of 10 samples.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e9

0

1K

2K

3K

4K

5K

6K

C
el

ls
 fo

un
d

Montezuma's Revenge

Final reward 1
Final reward 2
Final reward 3 (main exp.)
Final reward 4
Final reward 5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e9

0

5K

10K

15K

20K

25K

30K

A
ve

ra
ge

 re
w

ar
d

Montezuma's Revenge

Final reward 1
Final reward 2
Final reward 3 (main exp.)
Final reward 4
Final reward 5

Supplementary Figure 10: All tested values for final rewards lead to the continuous discovery
of new cells over the first 2 billion frames (left). Similarly, the average reward continuously
increases for all treatments (right). Shaded areas show 95% bootstrapped confidence intervals of
the mean with 1,000 samples. Each line is averaged over 10 runs with independent seeds.

4 Detachment and derailment Environment exploration has long been a central topic in the

field of reinforcement learning1,34,50,51,64. Despite the extensive research on exploration in rein-

forcement learning, we hypothesise that many previous algorithms have been affected by two ma-

jor issues which we call detachment and derailment.

4.1 Detachment We define detachment as losing track of interesting areas to explore from. Here,

“interesting areas to explore from” refers to states for which we have evidence (e.g. a low number

of visits) that they could lead to the discovery of new areas of the environment. “Losing track”

means that the algorithm stops trying to visit those areas prematurely, despite the fact that they

are not thoroughly explored yet. For reinforcement learning algorithms that only optimise the

expected return, detachment is almost guaranteed, as these algorithms do not attempt to promote

exploration explicitly. Unless external rewards are aligned with interesting areas to explore from,

such algorithms will stop visiting under-explored areas in favour of areas with a high return. How-

ever, algorithms that reward the agent for exploring new states can still suffer from detachment.

In intrinsic-motivation (IM) algorithms, for example, detachment can happen because the intrinsic

reward is lowered each time a state is visited, so that, eventually, they in effect provide no incen-

58

Supplementary Figure 11: Example of detachment with intrinsic reward. Green areas indicate
intrinsic reward, white indicates areas where no intrinsic reward remains, and purple areas indicate
where the algorithm is currently exploring.

tive for an agent to return to them. This issue can be especially prominent when there are multiple

frontiers, as the agent may now, due to stochastic exploration, stop visiting one of those frontiers

long enough to forget how to return to it (Supplementary Fig. 11). When this happens, the agent

has to effectively relearn how to reach the frontier from scratch, but this time there is no intrinsic

reward anymore to guide the agent. If intrinsic rewards were required to find the frontier in the

first place, meaning that an algorithm without intrinsic rewards would fail to find this frontier, the

IM algorithm will similarly fail to rediscover the frontier as well, meaning it has detached from the

frontier. One might think that allowing intrinsic motivation to regrow after a time would solve the

issue, but in that case the same dynamic can just play out over and over again endlessly.

4.2 Derailment We define derailment as when the exploratory mechanisms of the algorithm pre-

vent it from returning to previously visited states. Returning to previously visited states is im-

portant because many RL environments, and especially hard-exploration environments, contain a

large number of states that are far way from a starting state and can not be easily reached from such

a starting state through random actions, even when exploring for hundreds of billions of frames. To

discover these states, many algorithms rely on the policy learning to take actions that lead to states

59

that are increasingly further away, either because the policy discovered external rewards leading

towards these far away states, or because the algorithm provides intrinsic rewards that lead the pol-

icy towards infrequently visited states. However, as the policy needs to take an increasingly large

number of correct actions to reach unexplored areas of the environment, it becomes increasingly

likely that a state-agnostic exploration mechanism (i.e. any exploration mechanism that explores

the same amount in all states, regardless of whether the agent is in a novel or a well-explored area),

such as ε-greedy exploration, will cause the policy to take one or more exploratory actions that

prevent it from reaching the distant state it sought to return to, thus stifling exploration. Two com-

mon strategies to prevent derailment are to (1) set the exploration probability (e.g. ε in ε-greedy

exploration) to be small or (2) to start with a high exploration probability, but reduce it over train-

ing iterations18. Working with a fixed, low exploration probability throughout training reduces the

effective derailment throughout training, but it also means that very little exploration will happen

once a new state is reached. Annealing exploration over training iterations will initially lead to a

lot of exploration at the cost of heavy derailment. Unfortunately, if there exists a far away state that

requires precise actions to reach, that state will not be reached until the exploration probability has

been reduced sufficiently to avoid derailment. This low exploration probability means that, once

the agent is finally able reliably reach this far away state, very little exploration will be performed

after reaching it.

The solution we propose to avoid derailment is to have an algorithm exhibit separate explo-

ration probabilities depending on whether it is in a well-known area of the environment, meaning

the probability of exploratory actions should be low, or in an unknown area of the environment,

meaning the probabilities of exploratory actions should be high. While doing so is not a fea-

ture of state-agnostic exploratory mechanisms like ε-greedy exploration, one could hope that it

is a property of algorithms that explore by sampling from a stochastic policy, because stochastic

policies could learn to be low entropy in familiar states (i.e. they are certain about the correct

action) while remaining high entropy in new states (i.e. where they should be uncertain about the

correct action). However, deep learning struggles to remain well-calibrated when provided out-of-

distribution input data. In image classification, for example, when networks classify images far out

of distribution, it would be helpful if these networks returned a uniform distribution of probability

across classes to properly indicate uncertainty, but networks instead are often surprisingly overcon-

fident90,91. In the context of RL, this result means that we can expect trained policies to be highly

confident in their actions (i.e. low entropy), even in areas that they have never observed before, thus

60

resulting in a lack of exploration. To remedy this issue, stochastic-policy RL algorithms generally

add an entropy bonus to the loss function, encouraging the policy to assign more equal probabil-

ity to all actions. However, because this entropy bonus applies equally throughout the trajectory

of a policy, it is difficult to tune the entropy bonus in a way that guarantees effective exploration

without sacrificing the network’s ability to return; if the entropy bonus is too high, the policy will

frequently take exploratory actions that prevent it from returning, thus causing derailment, but if

the entropy bonus is too small, the policy will not explore sufficiently when a new area is reached.

5 Exploration in Atari While scores provide one measure of exploration in hard-exploration

games, additional insights can be gained by examining game-specific metrics, especially for games

which have received at lot of attention in past research, such as Montezuma’s Revenge and Pitfall.

Both Montezuma’s Revenge and Pitfall are recognised in the field of RL for being exception-

ally difficult to solve because they have extremely sparse rewards1,50,51,55–57,64,72,85,92. Montezuma’s

Revenge has become an important benchmark for exploration algorithms (including intrinsic mo-

tivation algorithms) because precise sequences of hundreds of actions must be taken in between

receiving rewards. Pitfall is even harder because its rewards are sparser and because many actions

yield small negative rewards that dissuade RL algorithms from exploring the environment. As

such, these games often received special attention in previous works, with many papers reporting

game specific metrics in addition to raw scores31,34,50,51,56,72,93.

One particular metric indicative of exploration in both Montezuma’s Revenge and Pitfall is

the number of rooms the algorithm discovers. In both of these games the world is broken down

into rooms, with each room containing different obstacles, enemies, and items. These rooms are

spatially organised: Montezuma’s Revenge features 24 rooms organised in the shape of a pyramid

(Supplementary Fig. 12) and Pitfall has 255 rooms that are horizontally organised, with the last

room being connected to the first room. The agent can travel between rooms by moving to the

edge of the screen, after which it will be moved to the adjacent room. Montezuma’s Revenge also

has 3 unique levels, where each level features a new set of 24 rooms, thus resulting in a total of

72 unique rooms. To reach the next level in Montezuma’s Revenge, the agent has to navigate to

the bottom-left room in the pyramid (called the treasure room), after which it will be teleported

(after a short delay) to the middle room at top of the pyramid in the next level. While Montezuma’s

Revenge has only 3 levels, the final level repeats indefinitely (with some stochastic events due to

sticky actions), meaning the agent can play this level an arbitrary number of additional times to

increase its score (provided it is robust enough to handle the stochastic events).

61

Supplementary Figure 12: The pyramid-like room layout of Montezuma’s Revenge (level 1).

While we did not track levels or rooms in the experiments with a downscaled representation

(because such information is domain dependent and our downscaled representation is not), it is

part of our domain knowledge representation, which we tested on Montezuma’s Revenge and Pit-

fall. These metrics indicate that Go-Explore with a domain-knowledge representation thoroughly

explores these games. In Pitfall, Go-Explore finds all 255 rooms in 96 of the 100 runs, with the

remaining runs never finding fewer than 183 rooms. In Montezuma’s Revenge, Go-Explore finds

all 72 unique rooms in 97 out of 100 runs (and 71 rooms in the remaining 3). Go-Explore also

completely solves all 3 unique levels in Montezuma’s Revenge in all of the 100 runs, which is

what allows the robustified policies to obtain almost arbitrarily high scores, as reported in the main

paper. Policy-based Go-Explore demonstrates similar exploratory abilities. On Pitfall, it finds all

255 rooms in 8 out of 10 runs, with the lowest number of rooms discovered among the other 2

runs being 236. On Montezuma’s Revenge, policy-based Go-Explore finds all 72 unique rooms

and solves all 3 unique levels in 9 out of 10 runs, with the remaining run finding 70 unique rooms

and solving the first 2 levels.

Other games worth mentioning are Private Eye and Skiing. Private Eye is a sparse reward game

and is also a common benchmark in work focused on exploration in RL1,13,31,51,53–55. The goal

in Private Eye is to collect evidence and apprehend a criminal by navigating a maze-like “city”.

Similar to Montezuma’s Revenge and Pitfall, the environment in Private Eye contains very few

rewards and is full of hazards that need to be avoided. In addition, the objectives need to be

62

completed in a specific order (all evidence needs to be collected and delivered to specific locations

before the criminal can be apprehended), making it particularly difficult to complete all objectives,

as is evidenced by the fact that state-of-the-art performance is 26,36453, far below the roughly

100,000 points that can be obtained by completing all main objectives. Despite these obstacles, the

robustified policies produced by Go-Explore with a downscaled representation are able to reliably

achieve more than 100,000 points in 4 out 5 runs, thus having discovered and learned to perform

all objectives in the game.

Skiing is a notoriously difficult game for RL agents, with state-of-the-art performance

(-10,386)54 far below that of average human performance (-4,336). In contrast to hard-exploration

games like Montezuma’s Revenge and Pitfall, Skiing is difficult to learn because of its reward

structure. The goal of the game is to reach the end of a slope as fast as possible while passing

through all the gates that appear along the way down, with each frame spend resulting in a small

(-1 or -2) negative reward and each gate missed resulting in a large (-500) negative reward. How-

ever, while the time-spent reward is provided immediately, the negative reward for gates missed is

only provided at the end of the slope, thus resulting in a difficult credit assignment problem with

delayed reward (e.g. the reason for a negative reward at the final time step may be the result of

missing the very first gate). The scale difference in rewards also means that reward clipping gen-

erally results in the agent ignoring the gates completely, because no matter how many are missed,

the gates account for only a single reward instance, while the time-based reward is received many

times throughout an episode. Go-Explore, however, is able to find demonstrations that pass through

many gates (as it keeps track of the highest performing trajectory that reaches the end of the slope)

and allows rewards to be normalised appropriately (as it learns about the magnitude of the game

rewards during the exploration phase), rather than clipped. As a result, the robustified policies

produced by Go-Explore with a downscaled cell representation receive a mean score of -3,660,

outperforming human performance (Fig. 2b in the main paper).

6 Generality of downscaling Downscaling is a simple method for aggregating states into cells

that can potentially be applied in any domain where the state is a visual observation (our experi-

ments demonstrate that it is effective on all games in the Atari benchmark), though it is possible

that complex environments with rich visuals may produce visual changes that are irrelevant to ex-

ploration, yet result in different downscaled frames, which can hinder exploration and may require

more sophisticated (e.g. learned) representations.

63

7 Derailment in robotics As shown in the main text of this paper, a count-based intrinsic mo-

tivation control completely fails to discover any rewards in the robotics environment even though

it is given the same domain knowledge state representation as Go-Explore’s exploration phase and

when given a comparable budget of frames to Go-Explore’s exploration and robustification phases

combined. Evidence from the experiments suggests that this failure is primarily due to the problem

of derailment, specifically to the difficulty that the IM control has of learning to reliably grasp the

object.

Grasping is widely considered an extremely difficult task to learn in robotics94,95. The over-

whelming majority of undiscovered cells are those that require grasping the object and lifting it to

reach. The claim that the failure to explore the environment is due to derailment when grasping

the object necessitates that grasping is discovered, but cannot be reliably reproduced by the policy

due to its excessive exploratory mechanisms. We separate the discovery of grasping into three

steps: touching the object with one of the two grippers (the “touch” step), touching the object with

both grippers (the “grasp” step), and finally lifting the object (the “lift” step). An analysis of the

cells and counts discovered by 20 control runs (5 per target shelf) shows that all runs discover the

“touch” and “grasp” step, but in 18 (90%) of these runs, the count associated with the “grasp” step

is at least 10x smaller than that associated with the “touch” step, indicating difficulty (and thus

possible derailment) in learning to go from the “touch” step to the “grasp” step. In the 2 (10%)

remaining runs, the “grasp” step count is closer to the “touch” step count, but, in one case, lifting

is never discovered, and in the other, lifting is discovered, but the count for the “lift” step is again

over 10x smaller than that of the “grasp” step, indicating possible derailment in between those

two steps. It is thus apparent that the IM control has difficulty returning to the grasping stepping

stones that it discovers, in spite of these cells often having amongst the lowest counts of any cell

discovered, and thus the highest intrinsic rewards, thereby providing evidence of derailment.

8 Go-Explore and Quality-Diversity Preserving and exploring from stepping stones in an archive

is reminiscent of the MAP-Elites algorithm96, and quality diversity algorithms more broadly97,98.

However, Go-Explore applies these insights in a novel way: while previous QD algorithms fo-

cus on exploring the space of behaviours by randomly perturbing the current archive of policies

(in effect departing from a stepping stone in policy space rather than in state space), Go-Explore

explicitly explores the state space by departing to explore anew from precisely where a previous

exploration left off. In effect, Go-Explore offers significantly more controlled exploration of the

state space than other QD methods by ensuring that the scope of exploration is cumulative through

64

the state space as each new exploratory trajectory departs from the endpoint of a previous one.

9 Go-Explore, Planning, and Model-based RL The way in which Go-Explore explores a

search space is reminiscent of classical planning algorithms such as breadth-first search, depth-

first search, or A*46. These planning algorithms often explore a search space starting with a set

of unexplored nodes called the frontier and then iteratively: (1) select a node from the frontier,

(2) gather the nodes that can be reached from the selected node (called expanding the node), and

(3) add the gathered nodes to the frontier so that they can be selected and expanded in the future.

Within the formalism of Markov decision processes that is the basis of RL, states are the natural

equivalent of planning nodes and in order to fully expand a state it would be necessary to take

every possible action from that state (up to an infinite amount of times if the environment features

unknown stochastic transitions). Small environments with limited stochasticity may be explored

in their entirety this way, but many practical RL environments feature state-spaces that are much

too large to fit in memory, large or continuous actions spaces in which it is intractable to try every

action in every state, and ubiquitous stochasticity in transitions that makes it impossible to know

when a state has been fully explored. Go-Explore demonstrates one way in which we can trans-

fer the principles from planning algorithms and overcome the aforementioned challenges. When

considering Go-Explore from the perspective of a planning algorithm, the archive is analogous to

the frontier, selecting a state from the archive is analogous to selecting a node from the frontier,

exploring from a state is analogous to expanding a node, and adding new states to the archive is

analogous to adding the gathered nodes to the frontier. However, Go-Explore innovates relative to

classic planning algorithms in two ways: (1) by aggregating similar states into cells, Go-Explore

can be applied to domains with high-dimensional state spaces (more on this issue in the next para-

graph), and (2) by running a learning-from-demonstrations algorithm on the trajectories found in

the exploration phase, Go-Explore is able to train closed-loop policies that are able to deal with

environmental uncertainty by generalising to never-seen-before states, which can even result in a

policy that can outperform the plans they were trained on.

Porting the principles behind planning algorithms to high-dimensional state spaces by aggre-

gating similar states into cells is a non-trivial technical challenge. One problem is that, in the

aggregated space, it is unknown whether edges exist between the different nodes, meaning that an

algorithm has to empirically discover the existence of an edge between two nodes, for example by

executing a sequence of actions to try to reach one node from another. Thus, nodes can never fully

be marked as “closed”. Go-Explore addresses this issue by never marking any cells as closed, but

65

instead reducing the relative probability of selecting a cell when it is explored from. This way, if a

cell has been explored many times, meaning it probably should be considered “closed”, it is indeed

selected only infrequently. However, if at some point all cells in the archive have been explored

many times, the selection probabilities will equalise, thus ensuring that old cells will be explored

from again, thus preventing the algorithm from getting stuck. Another challenge is that two dif-

ferent trajectories towards the same aggregated cell can actually lead to two very different states

(e.g. in one state the agent may be in the process of jumping over a gap while in the other state

the agent may be falling into that gap). This difference in states makes it difficult to substitute one

path to a particular cell with a new path to that same cell, even if the new path is shorter or higher

scoring, because, while the two paths may lead to the same cell, they may actually lead to very

different states within that cell. Go-Explore side-steps this challenge by never performing path

substitution, but instead by re-exploring whenever a better path to an existing cell is found. Over-

all, Go-Explore motivates porting the techniques from classic planning algorithms to challenging

problems with high-dimensional search spaces and suggests some methods for how this may be

achieved.

Go-Explore also exhibits important similarities with Rapidly-exploring Random Trees (RRT)45,

a popular planning algorithm in robotics domains, as both algorithms keep track of an archive of

states and trajectories to those states. However, there are some crucial differences, including: (1)

RRT proceeds by first sampling a goal to attempt to reach, which can be impractical in envi-

ronments where reachable states are not known a priori (and which is particularly pernicious in

high-dimensional state spaces, such as pixels or even learned encodings, where most randomly se-

lected goals are unreachable), and (2) RRT does not have the concept of aggregation of states that

is present in Go-Explore and thus RRT can add many very similar states to its archive that do little

to help the algorithm reach meaningfully different unexplored areas of the search space. As with

the classic planning algorithms, Go-Explore motivates porting techniques like RRT to challenging

problems with high-dimensional search spaces.

Finally, Go-Explore is reminiscent in some ways of model-based RL algorithms. For example,

when Go-Explore returns to previously visited states by restoring simulator state, the simulator

effectively operates as the model for Go-Explore. Many model-based RL algorithms perform

relatively shallow runs of stochastic planning algorithms, like MCTS99 or UCT62,100, to decide

which action to take every time a decision has to be made. Go-Explore with state restoration, on

the other hand, is more similar to algorithms like Dyna101 and AHCON-M102, which are hybrids

66

between model-based and model-free RL algorithms because they use a model during training,

but eventually take actions with a model-free policy. However, Go-Explore with state restora-

tion differentiates itself from those algorithms by deeply exploring a pre-existing model to find

high-performing solutions which it robustifies into a model-free policy only after this exploration

process has finished. Another difference is that model-based RL is generally focused on learning a

model, but the two variants of Go-Explore presented in this paper do not try to learn a model; the

version of Go-Explore that restores simulator state assumes that an appropriate simulator is already

available (and it frequently is in many practical domains), while policy-based Go-Explore trains a

goal-conditioned but model-free policy to navigate the environment. However, there is no obvious

obstacle that precludes a variant of Go-Explore that takes exploratory steps in the real environment

in order to learn a model, and then performs deep exploration within that model to determine the

most promising location to explore next. Doing so is a promising area for future work.

10 Go-Explore and Stochasticity One of the goals in the field of reinforcement learning is to

develop agents that can operate “in the real world,” which refers to applications ranging from

having a robot navigate a house to a virtual assistant that could help accomplish tasks online such

as booking travel. Many of these real world applications feature events that are unpredictable,

but which can be modelled as being stochastic. For example, a gust of wind may be the result of

pressure differences in the air around us, but predicting it based on what can be observed locally

is difficult, meaning that it often makes more sense to consider gusts of wind as stochastic events

that can happen with some probability. As such, in order to operate in the real world, agents will

have to be able to deal with these kinds of perceived stochasticity in a robust and reliable way.

When exploring by restoring simulator state, Go-Explore relies on the robustification process to

train a policy that is capable of dealing with stochasticity and this robustification process generally

takes place in the simulator. Regardless of whether the simulator was deterministic or stochastic

during the exploration process, it is desirable that the simulator includes some form of stochasticity

during the robustification process in order to encourage robustness in the trained policy (e.g. the

sticky actions in our experiments).

In order for the Go-Explore trajectories found in the exploration phase to be informative during

the robustification phase, there are some limits to the amount and kind of stochasticity that can

be in the environment during robustification. For robustification to be possible, the following two

conditions should hold: (1) it has to be possible to roughly follow the trajectories found during the

exploration phase and (2) doing so should result in a high expected cumulative reward.

67

The first condition is met if the transitions in the sample trajectory are sufficiently probable or if

there is way to recover from, or compensate for, some of the transitions not leading to the desired

next state. With 25% sticky actions, for example, there is a 25% chance that a transition does not

lead to the desired next state whenever the previous action differs from the current action, virtually

guaranteeing significant drift from the original trajectory, which is frequently thousands of steps

long. However, in Atari, it is often possible to recover from an undesired transition. In Pitfall, an

undesirable transition may occur when the agent transitions from moving left (requiring the “left”

action) to climbing a ladder (requiring the “up” action). A sticky action here can cause the agent

to overshoot the ladder, at which point the “up” action is no longer effective, but the agent can

recover by taking a “right” action in order to move back to the ladder. Note that the first condition

specifies that the agent only needs to be able to “roughly” follow the example trajectory. Extending

the example above, because Pitfall has a time limit, the recovered state is not the exact same state

that the agent would be in if it did not overshoot the ladder, because it now has fewer frames left to

obtain the highest possible reward. However, the recovered state is sufficiently similar, in the sense

that the agent does not have to adopt a different policy in order to obtain a high expected reward

from this state. As such, the agent can still “roughly” follow the example trajectory, even though

it is no longer possible to visit states that are identical to those found in the example trajectory.

The second condition mostly puts constraints on the stochasticity of the rewards. This condi-

tion can be broken if one or more of the transitions in the example trajectory are associated with

rewards that are substantially higher than the expected reward for those transitions in the stochastic

environment. For example, the highest scoring trajectory returned by the Go-Explore exploration

phase could contain a transition in which the agent plays the lottery and wins (i.e. receives a high

reward), even though the expected reward for playing the lottery may actually be negative. This

condition can similarly be broken if even minor differences in state can have a large effect on the

expected reward. One example would be if the agent had to operate under a very strict time limit

such that any kind of deviation would result in the agent running out of time before being able to

collect some final reward.

Overall, we do not believe that these constraints are overly restrictive in most practical scenarios.

Robotics problems, for example, generally have to deal with stochasticity in the form of small

inaccuracies in the actuators, rather than with lottery tickets. That said, it is likely that it is possible

to improve Go-Explore to be more robust towards stochasticity in transitions and rewards (in fact,

we suggest some improvements in SI “Policy-based Go-Explore and Stochasticity”) and we believe

68

that this is a promising direction for future work.

11 Policy-based Go-Explore and Stochasticity Restoring simulator state is a highly efficient

method for returning to previously visited states, as it both removes the need to replay the trajectory

towards a previously visited state as well as the need to train a policy capable of doing so reliably.

That said, doing so also has the potential drawback that some of the trajectories found by restoring

simulator state can be hard to robustify if that trajectory is not representative of realistic policies

that can succeed in the stochastic testing environment. For example, imagine a robot with the goal

of crossing a busy highway. The cars on the highway are stochastic, meaning that their position,

speed, and reactions will differ in every episode, but the highway is always busy. As such, we

assume that there is no safe way to reliably cross the busy highway directly. The highway has

an overpass that allows the robot to easily and reliably cross the highway safely, but it is located

some distance away from the robot, meaning that it is not the shortest method to cross the highway.

However, when restoring simulator state, it is likely that Go-Explore will find a way directly across

the highway in this particular scenario, because there probably exists some static sequence of lucky

actions that brings the agent from one cell on the highway to the next cell, and once the next cell

is reached, that progress is saved in the form of the simulator state. Once the opposite side of

the highway is reached, this shorter trajectory will overwrite any longer trajectories that go over

the overpass, and the final trajectory returned will go directly over the highway. Training a policy

that can reliably follow this trajectory may be impossible because the stochasticity of the cars on

the highway (i.e. the stochasticity of the environment) can make it such that a sufficiently reliable

policy simply does not exist. That is, each new random busy highway situation requires its own

lucky set of actions that may not derive in any systematic way from the agent’s observations.

Policy-based Go-Explore can alleviate this situations in two ways. First, because its progress

along the highway is not saved and because each trial is in a stochastic environment, policy-based

Go-Explore must attempt to return manually to each cell across the highway in different conditions.

If there does not exist a reliable policy that can do so, it is unlikely that policy-based Go-Explore

will ever cross the highway this way. As a result, policy-based Go-Explore is much more likely to

learn a policy that reliably navigates the overpass instead.

Second, because policy-based Go-Explore needs to return to cells in the presence of stochas-

ticity, it can keep track of the success rate towards each cell in the archive. As such, even if

policy-based Go-Explore is sometimes able to cross the highway, it is possible to not overwrite

cells on the other side of the highway until the policy has learned to return to those cells reliably.

69

Doing so prevents the shorter, but unreliable trajectories from overwriting the longer but more re-

liable trajectories that take the safe overpass. A similar mechanic could be implemented to deal

with stochasticity in rewards, as policy-based Go-Explore makes it possible to track the average

reward when attempting to reach a particular state. Because it was not necessary to implement

such mechanics for the games of Montezuma’s Revenge and Pitfall, studying the effectiveness and

exact implementation details of such a mechanic is a topic for future research.

Last, it may be possible to resolve these issues even when Go-Explore is allowed to restore

simulator state. For example, it is possible to run the Go-Explore exploration phase many times

with different random seeds, thus making it possible to estimate which trajectories are and which

trajectories are not reliable. Recognising that trajectories with only slight differences in the states

visited still represent effectively the same solution could be handled by the aggregation that occurs

in the cell representation, meaning that solutions that visit the same cells in order (instead of the

same states in order) could be considered the same. It thus seems possible to produce a version

of Go-Explore that is able to estimate the reliability of different trajectories while still gaining the

advantages of restoring simulator state. Identifying the exact form of that algorithm and experi-

mentally validating it is a fruitful area of future research.

12 Comparing Policy-based Go-Explore and DTSIL After a pre-print paper describing Go-

Explore103 (but not policy-based Go-Explore) was published, and after our work on policy-based

Go-Explore was long underway, another research team independently developed and published the

Diverse Trajectory-conditioned Self-Imitation Learning algorithm (DTSIL)34, which is similar to

policy-based Go-Explore in many ways, as detailed below. Policy-based Go-Explore outperforms

DTSIL on both Montezuma’s Revenge and Pitfall after 3.2 billion frames, despite the fact that

policy-based Go-Explore was tested on a harder problem, i.e. with sticky actions (Supplementary

Fig. 13). In addition, the score of policy-based Go-Explore keeps increasing, eventually achieving

a score of 97,728 on Montezuma’s Revenge and 20,093 on Pitfall after 12 billion and 10 billion

frames, respectively. It is possible that the performance of DTSIL would also improve with addi-

tional frames, but those results were not reported.

DTSIL is similar to policy-based Go-Explore in that it follows the methodology described in

the Go-Explore pre-print in the following ways: (1) Like the original Go-Explore, DTSIL explic-

itly keeps track of an archive of many different states and trajectories to those states, (2) DTSIL

first moves the agent to one of these states before performing random exploration, (3) DTSIL de-

termines whether to add a state to the archive with the help of a domain-knowledge based state

70

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Frames 1e10

0

20K

40K

60K

80K

100K

120K

M
ea

n
R

ew
ar

d
to

 B
es

t C
el

l

DTSIL

(a) Montezuma’s Revenge

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e10

0

5K

10K

15K

20K

25K

M
ea

n
R

ew
ar

d
to

 B
es

t C
el

l

DTSIL

(b) Pitfall

Supplementary Figure 13: Policy-based Go-Explore test performance over time compared
against final performance of DTSIL. The final performance of DTSIL is indicated by the black
dot and is positioned at 3.2 billion frames, the number of frames for which the DTSIL agent was
trained. (a) On Montezuma’s Revenge policy-based Go-Explore outperforms DTSIL after 3.2 bil-
lion frames by roughly 18,000 points. (b) On Pitfall policy-based Go-Explore outperforms DTSIL
after 3.2 billion frames by roughly 6,000 points. Shaded areas show 95% bootstrap CIs of the mean
with 1,000 samples.

embedding, where similar embeddings are grouped into a single cluster (i.e. a cell representation),

and (4) DTSIL selects trajectories to follow (i.e. states to return to) by selecting them probabilis-

tically based on the number of times particular clusters have been visited, though DTSIL did not

consider any domain knowledge specific information for the purpose of this selection procedure.

Similar to policy-based Go-Explore, and as was recommended as a profitable future direction

in our pre-print103, DTSIL is a method that returns to previously visited cells with the help of a

goal-conditioned policy (referred to as a trajectory-conditioned policy in the DTSIL paper because

the policy is provided with a sequence of the next few goals, as explained below). Also similar

to policy-based Go-Explore, DTSIL follows a trajectory of intermediate sub-goals towards a par-

ticular goal cell, rather than conditioning the policy directly on the state to return to, and DTSIL

includes self-imitation learning to make training the policy more sample efficient. While working

on policy-based Go-Explore, we independently invented the technique of following a trajectory of

sub-goals and harnessing self-imitation learning.

One major difference between policy-based Go-Explore and DTSIL is that, when following a

trajectory, DTSIL aims to provide the entire trajectory as input to the policy, rather than just the

next cell in the trajectory. As a result, the DTSIL network architecture requires some method to

71

deal with variable length trajectories (resolved with an attention layer), while the policy-based Go-

Explore architecture only requires the next (sub) goal cell as an input. Note that, in the DTSIL

paper, most trajectories that are followed were found to be too long to provide to the network in

their entirety, meaning the trajectory is instead provided to the network in small chunks, resulting

in a dynamic that is similar to providing only the next goal.

Another major difference is that policy-based Go-Explore also samples from the policy while

exploring, rather than just relying on random actions. As mentioned before (Extended Data Fig. 7),

sampling from the policy results in the discovery of many more cells, potentially explaining the

large performance advantage Go-Explore exhibits vs. DTSIL.

A third major difference is the way in which DTSIL and policy-based Go-Explore transition

from exploration to exploitation. DTSIL transitions from exploration to exploitation by either

slowly annealing across training iterations from selecting promising cells for exploration to se-

lecting the highest scoring cells, or by making such a transition abruptly once a particular score

threshold is reached. Policy-based Go-Explore, on the other hand, only focuses on exploration

during training. Interestingly, despite being asked to return to all cells, rather than spending a good

number of training iterations on just the highest performing ones (which is what DTSIL does), we

found that policy-based Go-Explore tends to be able to reliably return to the highest scoring cell in

the archive at test time.

A fourth major difference is our introduction of increasing entropy when the agent takes too

long to reach the next cell (see Methods “Policy-based Go-Explore”). This entropy increases the

exploration performed by policy-based Go-Explore only when necessary, thus largely avoiding

the problem of derailment. Because derailment can severely lower performance, we expect that

this innovation contributes substantially to the performance advantage of our implementation of

policy-based Go-Explore relative to DTSIL.

A last major difference is with respect to the experiments that were performed. DTSIL was

tested on Montezuma’s Revenge and Pitfall without sticky actions. In preliminary experiments

with policy-based Go-Explore, we found that removing sticky actions greatly simplified the prob-

lem, and testing policy-based Go-Explore without sticky actions would have increased its perfor-

mance. As a result, and as explained in methods, we did not include DTSIL in our comparison

with the state of the art, but we did provide a comparison at the beginning of this section.

Besides these major differences, there are many smaller differences between the two algorithms,

72

including differences in cell selection probabilities, SIL equations, reward clipping, maximum

episode length, and hyperparameters. For a full overview of these differences, we recommend

comparing the methods explained in this paper directly with the methods described in the DTSIL

paper34.

Because the algorithm described in the DTSIL paper is similar to policy-based Go-Explore, in

preliminary experiments, we tested whether some of the hyperparameters described in the DTSIL

paper would improve the performance of policy-based Go-Explore. In these preliminary experi-

ments, we found that the grid size of their cell representation (determining the granularity for the x

and y coordinates of the agent) of 9x9† and their learning rate of 2.5 · 10−4 did indeed perform bet-

ter than the hyperparameters we were testing at that time, and we adopted these hyperparameters

from the DTSIL paper instead.

The training performance of DTSIL on Montezuma’s Revenge and Pitfall was reported by Guo

et al. (2019)34 for experiments that ran for 3.2 billion frames. However, the performance-over-time

graph presented in the DTSIL paper is not directly comparable with the performance-over-time

graph shown in this paper because they represent results for different selection strategies. For

policy-based Go-Explore, we always report the average score achieved when returning to the high-

est scoring cell in the archive (obtained after training is completed by loading stored checkpoints

and testing the policy 100 times). In contrast, the DTSIL graph shows a rolling average score dur-

ing training, which means that its average includes returning to low-scoring cells as the algorithm

attempts to explore the environment. That said, the final performance of DTSIL after 3.2 billion

frames is measured over only the highest scoring trajectories, and can thus be reasonably compared

with the testing performance of policy-based Go-Explore after that many frames. For Montezuma’s

Revenge, we compare policy-based Go-Explore against the results that were reported in the sup-

plementary information of the DTSIL paper for a version of DTSIL that implemented the same cell

representation as the one used in the policy-based Go-Explore experiments (note, the Montezuma’s

Revenge results reported in the main DTSIL paper were lower). For Pitfall, we compare against

the only reported results, which were obtained with a slightly different cell representation than the

one used by policy-based Go-Explore. Specifically, the DTSIL cell representation includes the

cumulative positive reward achieved; the representations are otherwise the same.

†Note that, while an Atari frame is 160x210 pixels, the top 50 rows of pixels are unreachable in our test games and
were ignored, meaning that a discretization of 18x18 pixels does result in a 9x9 grid.

73

13 No-ops and sticky actions The Atari benchmark has been accepted as a common RL bench-

mark because of the large variety of independent environments it provides26. One downside of the

games available in this benchmark is that they are inherently deterministic, making it possible to

achieve high scores by simply memorising state-action mappings or a fixed sequence of actions,

rather than learning a policy able to generalise to the much larger number of states that are available

in each game. As the community is interested in learning general policies rather than open-loop

solutions, many have suggested approaches to improve the benchmark, usually by adding some

form of stochasticity to the game14.

One of the first of these approaches was to start each game with a random number (up to 30)

of no-op (i.e. do nothing) actions15. Executing a random number of no-ops causes the game to

start in a slightly different state each episode, as many game entities like enemies and items move

in response to time. While no-ops add some stochasticity at the start of an episode, the game

dynamics themselves are still deterministic, allowing for frame-perfect strategies that would be

impossible for a human player to reproduce reliably. In addition, with only 30 different possible

starting states, memorisation is more difficult, but still possible.

Because of the downsides of no-ops, an alternative approach called sticky actions was recom-

mended by the community14. Sticky actions mean that, at any time-step greater than 0, there exists

a 25% chance that the current action of the agent is ignored, and the previous action is executed in-

stead. In a way, sticky actions simulate the fact that it is difficult for a human player to provide the

desired input at the exact right frame; often a button is pressed a little bit too early, a little bit too

late, or held down for a little too long. Given that Atari games have been designed for human play,

this means that human competitive scores should be achievable despite the stochasticity introduced

by sticky actions.

While sticky actions have been recommended by the community, no-ops are still widely em-

ployed in many recent papers13,31. As it is possible that no-ops add some challenges not encoun-

tered with just sticky actions, we ensure that Go-Explore is evaluated under conditions that are

at least as difficult as those presented in recent papers by evaluating Go-Explore with both sticky

actions and no-ops. All Go-Explore scores in this paper come from evaluations with both of these

forms of stochasticity combined.

14 PPO and SIL Both the robustification “backward” algorithm and the implementation of

policy-based Go-Explore are based on the actor-critic-style PPO algorithm from Schulman et

al. (2017)20, wherein N parallel actors collect data in mini-batches of T timesteps, and policy

74

updates are performed after each batch. In all PPO-based algorithms presented here, the loss of the

policy and value function (both parameterized by θ) is defined as

L(θ) = LPG(θ) + wV FLV F (θ) + wENTLENT (θ) + wL2LL2 + wSILLSIL(θ) (9)

LPG(θ) is the policy gradient loss with PPO clipping, defined as

LPG(θ) = Es,a∼πθ [max(−Atrπt (θ),−Atclip(rπt (θ), 1− ε, 1 + ε))] (10)

rπt (θ) =
πθ(at|st)
πθold(at|st)

(11)

where s is a state, a is an action sampled from the policy πθ, rt is the reward obtained at time-step

t, and ε is a hyperparameter limiting how much the policy can be changed at each epoch. At is a

truncated version of the generalised advantage estimation:

Ât = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1 (12)

δt = rt + γVθ(st+1)− Vθ(st) (13)

where γ is the discount factor, λ interpolates between a 1-step return and a T -step return, Vθ is the

value function parameterised by θ, and st and rt are the state and reward at time step t, respectively.

Similar to the policy gradient loss, the value function loss LV F (θ) implemented here also includes

PPO-based clipping, and is defined as

LV F (θ) = Es,a∼πθ [max((Vθ(st)− R̂t)
2, (clip(Vθ(st)− Vθold(st),−ε, ε)− Ât)2)] (14)

R̂t = Vθold(st, gt) + Ât (15)

The algorithms further include entropy regularization104 LENT (θ) and an L2 regularization penalty

LL2(θ).

Finally, both the robustification algorithm and policy-based Go-Explore include a self-imitation

learning (SIL) loss37, LSIL(θ), which is calculated over previously collected data D. While the

source of D differs between the robustification algorithm and policy-based Go-Explore (see SI

“Multiple demonstrations” and Methods “Policy-based Go-Explore” for details), in both cases D
comes from previously collected trajectories τ and consists of tuples (s, a, R), where s is a state

75

encountered in one of these rollouts, a is the action that was taken in that state, and R is the

discounted reward that was collected from that state. With SIL, a small number (NSIL) of PPO’s

actors are assigned to be SIL actors. Each of these SIL actors, instead of taking actions in the

environment, replays one of these trajectories τ , and at each iteration the data collected by these

SIL actors forms the data set D. The LSIL(θ) loss is then calculated as

LSIL(θ) = LSIL PG(θ) + wSIL V FLSIL V F (θ) + wSIL ENTLSIL ENT (θ) (16)

LSIL PG(θ) = Es,a,R∈D[−logπθ(a|s) ·max(0, R− Vθold(s))] (17)

LSIL V F (θ) = Es,a,r∈D
[
1

2
max(0, R− Vθ(s))2

]
(18)

Here, LSIL ENT (θ) is the entropy regularization term104 calculated by evaluating the current policy

over D. An investigation of the effect of the SIL loss is provided in Sec. “Ablations”.

All architectures that feature recurrent units are updated with a variant of the truncated back-

propagation-through-time algorithm called BPTT(h;h′)105, which is suitable when data is gathered

in mini-batches. In BPTT(h;h′), the network is updated every h′ timesteps (here h′ = T , the num-

ber of timesteps in the mini-batch), but it is unfolded for h ≥ h′ timesteps (here h = 1.5T), mean-

ing that gradients can flow beyond the boundaries of the mini-batch. To facilitate BPTT(h;h′), the

first mini-batch of each run consists of 1.5T timesteps.

15 Backward algorithm details This section explains the details about how we use multiple

demonstrations and reward scaling in the backward algorithm.

15.1 Multiple demonstrations The original version of the backward algorithm relied on a single

demonstration due to the assumption that obtaining human demonstrations was expensive. In

our case, however, obtaining multiple demonstrations is easy and cheap by simply re-running the

exploration phase, which is why we modified the algorithm to utilise multiple demonstrations: at

the start of each episode, a demonstration is chosen at random to provide the starting point for the

agent. For Atari, 10 demonstrations from different runs of the exploration phase were used for each

robustification. In Atari, the demonstration was extracted by finding all trajectories that reached an

end-of-episode state (to prevent selection of length 0 trajectories in games with exclusively negative

rewards, see “Score tracking in the exploration phase”), and extracting the shortest one among

those with the highest score. For robotics, because it was possible to extract diverse demonstrations

from a single run of the exploration phase (this was not possible in Atari because high-scoring

76

trajectories within a given Atari run tended to share most of their actions), 10 demonstrations from

the same runs were used for robustification. In robotics, the first demonstration corresponds to the

shortest successful trajectory (i.e. the shortest trajectory that puts the object in the shelf), while

each subsequent demonstration corresponds to the successful trajectory with the highest mean

difference from all previously selected trajectories, where the difference between two trajectories

is given by
∑L
i=1 I(τ

a
i 6=τbi)

L
(τa and τ b are the list of actions being compared, L = min(|τa|, |τ b|), I is

the indicator function). Because actions are continuous, meaning that it is exceedingly unlikely for

two independently sampled actions to be the same, τai = τ bi only for parts where the trajectories

are identical because they were branched from the same intermediate trajectory. As such, this

metric effectively measures to what degree the two trajectories have a shared history, and prefers

trajectories that share as little history as possible. In both cases, SIL was also performed on the

set of demonstrations provided to the backward algorithm (see the “PPO and SIL” section). Each

robustification run used demonstrations from different, non-overlapping exploration phase runs (10

exploration runs for Atari, 1 for robotics).

On Atari, the score that can be obtained by starting the algorithm from the start of the environ-

ment is tracked throughout the run by adding a virtual demonstration of length 0, i.e. traditional

training that executes the current policy from the domain’s traditional starting state. This addition

makes it possible to occasionally obtain superhuman policies even when the backward algorithm

has not yet reached the starting point of any of the non-virtual demonstrations it was provided.

During training, the time limit of an episode is the remaining length of the demonstration (which

is generally much shorter than the environment time limit, especially at the beginning of training

since we start at the end of demonstrations and move backwards) plus a few extra frames (Ex-

tended Data Table 1a). When the virtual demonstration is selected, however, the time limit is that

of the underlying environment (Extended Data Table 1b). As a result, training episodes in which

the virtual demonstration was selected often require many more frames to complete than those

corresponding to an exploration phase demonstration. To balance the number of frames allocated

to the virtual demonstration, the average number of steps in an episode corresponding to the virtual

demonstration (lv) is tracked as well as the average number of steps corresponding to starting from

any other demonstration (ld), and the selection probability of the virtual demonstration is then 1
11
ld
lv

,

where 11 is the total number of demonstrations (10 from the exploration phase runs and 1 virtual

demonstration). In cases where the virtual demonstration was not stochastically chosen, one of the

exploration phase demonstrations was chosen uniformly at random.

77

15.2 Reward scaling A key difficulty in implementing an RL algorithm that can perform well

across all Atari games with identical hyperparameters is the significant variations in reward scales

within the Atari benchmarks, with some games having an average reward of 1 and others with av-

erage rewards of over 1,000. Traditionally, this challenge has been addressed with reward clipping,

in which all rewards are clipped to either -1 or +1, but such an approach is problematic in games

(e.g. Pitfall and Skiing) in which the scale of rewards within the game is relevant because it tells

the agent the relative importance of different rewarded (or punished) actions. In this work, we take

advantage of the fact that the deterministic exploration phase is unaffected by reward scale and can

provide us with a sense of the scale of scores achievable in each game. We are thus able to use

reward scaling in the robustification phase: at the start of the robustification phase, the rewards of

the demonstrations are used to produce a reward multiplier that will result in every game having

approximately the same value function scale. This reward multiplier is given by

m =
C

µV
(19)

where C is a constant representing the target average absolute value of the value function when

following the demonstration (in all our experiments, C = 10), and µV is defined as

µV =
1∑D
d=1 Td

D∑
d=1

Td∑
t=1

|Vd(t)| (20)

where D is the number of demonstrations, Td is the number of steps in each demonstration, and

Vd(t) is the sum of discounted rewards in demonstration d starting from step t.

16 Score tracking in the exploration phase In Atari, the score of an exploration phase run is

measured as the highest score ever achieved at episode end. In our implementation, this score is

tracked by maintaining a virtual cell corresponding to the end of the episode. An alternative ap-

proach would be to track the maximum score across all cells in the archive, regardless of whether

they correspond to the end of episode, but this approach fails in games where rewards can be

negative (e.g. Skiing): in these cases, it is possible that the maximum scoring cell in the archive

inevitably leads to future negative rewards, and is therefore not a good representation of the maxi-

mum score achievable in the game. In practice, for games in which rewards are non-negative, the

maximum score at end of episode is usually equal or close to the maximum score achieved in the

entire archive.

78

17 Robustification scores analysis Since the robustification phase is intended to train a robust

policy from exploration phase trajectories, it might be expected that it would produce policies that

approximately replicate the performance of the original trajectories. While this is observed in the

robotics environment and in several Atari games (Bowling, Freeway, Solaris, and Pitfall without

domain knowledge), there are both positive and negative score differences on some other games

on Atari. Negative differences (Gravitar and Venture) occur when PPO struggles to match the

performance of the original demonstration at a particular point in the trajectory, resulting in the

backward algorithm failing to move the training starting point to the beginning of the trajectory.

In spite of these difficulties, the exposure to a larger part of the state space as well as the SIL

frames allow the robustification phase to exceed human and state-of-the-art performance even in

such cases of partial failure. Interestingly, there are also several cases (Berzerk, Centipede, Mon-

tezuma’s Revenge, Private Eye, Skiing, and Pitfall with domain knowledge) where the robustified

policies obtain substantially higher scores than the trajectories discovered during the exploration

phase, demonstrating that the robustification process can have benefits that go beyond merely pro-

viding robustness to stochasticity. There are three reasons for this: First, while the exploration

phase does optimise for score by updating trajectories to higher scoring ones, the robustification

phase is more effective at fine-grained optimisation due to its underlying use of an RL algorithm.

For example, if the exploration phase wasted a few frames by bumping into a wall while going from

one cell to another, PPO will easily be able to optimise that path, which can impact the final score

in time-based games. Second, the robustified policy may generalise patterns that are discovered

in the exploration phase. An extreme example is found in Montezuma’s Revenge with domain

knowledge exploration. Because the exploration phase is able to reach the end of level 3, after

which Montezuma’s Revenge keeps repeating this level indefinitely (with some stochastic events

due to sticky actions), the robustified policy learns to achieve arbitrarily high scores by repeatedly

solving this level. Finally we provide the backward algorithm with demonstrations from multiple

(10) runs of the exploration phase, thus allowing it to follow the best trajectory in the sample while

still benefiting from the data contained in worse trajectories.

18 Comparing Go-Explore and Agent57 The creation of the Atari benchmark started the

search for reinforcement learning algorithms capable of achieving super-human performance on all

games in this benchmark26. For a majority of these games, super-human performance was reached

quickly through early deep reinforcement learning techniques now considered standard15, but for

a small set of games super-human performance remained out of reach. The work presented in this

79

paper achieved this historic feat concurrently with an algorithm called Agent5713. Go-Explore and

Agent57 accomplish this milestone via very different methods, offering the scientific community

a diversity of promising tools to use and build upon going forward.

Agent57 is built upon the Never Give Up (NGU) algorithm31. NGU was able to achieve super-

human performance on the majority of the Atari games by combining within-episode and across-

episode intrinsic motivation, tracking many Q-functions that each maintain a different trade-off

between intrinsic and extrinsic motivation, and implementing efficient parallelization of data col-

lection. Agent57 elevated the performance of NGU to superhuman on all games by dynamically

learning which of its many Q-functions provides the highest cumulative reward, stabilizing the

learning of those Q-functions, and by running the algorithm for an impressive 100 billion frames.

So, while Agent57 achieved the milestone of superhuman performance on the last few remaining

games at the same time as Go-Explore, its method is vastly different from Go-Explore.

With respect to results, it is first of all important to reiterate that Go-Explore was evaluated in an

environment with sticky actions (i.e. following community standards, see SI “No-ops and sticky

actions”) while Agent57 was evaluated in an environment without sticky actions. Sticky actions

make the games substantially harder to play well, which is why Agent57 was not considered for

direct comparison with Go-Explore in the main paper (see Methods “State of the art on Atari”).

Despite the fact that Go-Explore solutions were evaluated under more difficult conditions, Go-

Explore still outperforms Agent57 on 7 out of the 11 games that we tested (Table 2). It is also worth

noting that the Go-Explore results reported here were obtained after a total of 30 billion (or 40

billion for Solaris) frames of training data, while Agent57 was trained for 100 billion frames. While

Go-Explore does “skip” frames by reloading simulator state, we argue that these frames would also

be skipped in almost any scenario where Go-Explore is practically applied, as it should be possible

to save and restore the state of a modern simulator. That said, the relative sample efficiency of

policy-based Go-Explore (e.g. 97,728 points on Montezuma’s Revenge after 12 billion frames)

suggests that policy-based Go-Explore could be more sample efficient than Agent57 even if states

can not be restored, though the fact that policy-based Go-Explore was only tested with domain

knowledge makes it impossible to provide a fair comparison at this time.

19 ALE issues While the Arcade Learning Environment (ALE)26, which is the underlying back-

end of OpenAI Gym, is the the standard way to interface with Atari games in RL, the library comes

with a couple issues that needed to be addressed in our work.

80

Game Go-Explore Agent57
Berzerk 197,376 61,508
Bowling 260 251
Centipede 1,422,628 412,848
Freeway 34 33
Gravitar 7,588 19,214
MontezumaRevenge 43,791 9,352
Pitfall 6,954 18,756
PrivateEye 95,756 79,717
Skiing -3,660 -4,203
Solaris 19,671 44,200
Venture 2,281 2,628

Supplementary Table 2: Go-Explore outperforms Agent57 on 7 out of the 11 games that we
tested. Here we show the results of the Go-Explore variant where the exploration phase was
performed without domain knowledge and with restoration of simulator state. The Go-Explore
results were obtained by re-evaluating the final agent 1,000 times on the environment with sticky
actions and no-ops.

First, the score on Montezuma’s Revenge rolls over (i.e. is subject to numerical overflow) when

it exceeds 1 million, which is incorrectly interpreted by the ALE as a negative reward of -1 million.

We patched the environment to remove this bug and thereby make it possible for algorithms to learn

to produce scores higher than 1 million. In addition, we removed an arbitrary time limit of 400,000

frames, imposed by OpenAI Gym, that is not inherent to the game. This enabled us to learn that

Go-Explore can substantially outperform the human world record of 1.2 million33, with one agent

frequently reaching a score of over 40 million after 12.5 million frames (the equivalent of about

58 hours of continuous game play). On Montezuma’s Revenge, no previous work had achieved

scores anywhere near high enough to trigger this bug. It is similarly unlikely that the performance

of previous work was limited by the OpenAI Gym time limit on Montezuma’s Revenge.

Second, the implementation of Montezuma’s Revenge in the ALE library includes a bug that

prevents the agent from progressing to the next level when the agent is on its last life, which

is clearly unintended behaviour that does not occur in the original game. Because there are no

penalties for losing a life, policy-based Go-Explore learns to sacrifice lives in order to bypass

hazards or to return to the entrance of a room more quickly. As a result, policy-based Go-Explore

frequently reaches the treasure room without any lives remaining, preventing further progress. As

such, for policy-based Go-Explore only, we terminate the episode on first death, which avoids this

bug without simplifying the game.

20 Infrastructure In terms of infrastructure, each exploration phase run was performed on a

single worker machine equipped with 44 CPUs and 96GB of RAM, though memory usage is

81

substantially lower for most games. Each robustification run was parallelized across 8 worker

machines each equipped with 11 CPUs, 24GB of RAM, and 1 GPU. Policy-based Go-Explore was

parallelized across 16 worker machines each equipped with 11 CPUs, 10GB of RAM, and 1 GPU.

References

68. Cho, K., Van Merriënboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural

machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014).

69. Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The Arcade Learning Environ-

ment: An Evaluation Platform for General Agents (Extended Abstract). Proceedings of the

Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), 4148–4152

(2015).

70. Bellemare, M. G., Dabney, W. & Munos, R. A Distributional Perspective on Reinforcement

Learning in ICML (2017).

71. Van Hasselt, H., Guez, A. & Silver, D. Deep Reinforcement Learning with Double Q-

Learning. in AAAI 2 (2016), 5.

72. Stanton, C. & Clune, J. Deep Curiosity Search: Intra-Life Exploration Improves Perfor-

mance on Challenging Deep Reinforcement Learning Problems. CoRR abs/1806.00553
(2018).

73. Wang, Z., de Freitas, N. & Lanctot, M. Dueling Network Architectures for Deep Reinforce-

ment Learning in ICML (2016).

74. Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolution strategies as a scalable

alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017).

75. Nair, A. et al. Massively parallel methods for deep reinforcement learning. arXiv preprint

arXiv:1507.04296 (2015).

76. Xu, H., McCane, B., Szymanski, L. & Atkinson, C. MIME: Mutual Information Minimisa-

tion Exploration. ArXiv abs/2001.05636 (2020).

77. Stadie, B. C., Levine, S. & Abbeel, P. Incentivizing exploration in reinforcement learning

with deep predictive models. arXiv preprint arXiv:1507.00814 (2015).

78. Schrittwieser, J. et al. Mastering atari, go, chess and shogi by planning with a learned model.

Nature 588, 604–609 (2020).

82

79. Badia, A. P. et al. Never give up: Learning directed exploration strategies. arXiv preprint

arXiv:2002.06038 (2020).

80. Dann, M., Zambetta, F. & Thangarajah, J. Deriving Subgoals Autonomously to Accelerate

Learning in Sparse Reward Domains. Proceedings of the AAAI Conference on Artificial In-

telligence 33, 881–889. https://ojs.aaai.org/index.php/AAAI/article/

view/3876 (July 2019).

81. Sovrano, F. Combining experience replay with exploration by random network distillation

in 2019 IEEE Conference on Games (CoG) (2019), 1–8.

82. Schaul, T., Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay. arXiv preprint

arXiv:1511.05952 (2015).

83. Kapturowski, S., Ostrovski, G., Quan, J., Munos, R. & Dabney, W. Recurrent experience

replay in distributed reinforcement learning in International conference on learning repre-

sentations (2018).

84. Hessel, M. et al. Rainbow: Combining Improvements in Deep Reinforcement Learning in

AAAI (2018).

85. Gruslys, A., Azar, M. G., Bellemare, M. G. & Munos, R. The Reactor: A sample-efficient

actor-critic architecture. arXiv preprint arXiv:1704.04651 (2017).

86. Bellemare, M. G., Veness, J. & Bowling, M. H. Investigating Contingency Awareness Using

Atari 2600 Games in AAAI (2012).

87. Kahn, G., Villaflor, A., Pong, V., Abbeel, P. & Levine, S. Uncertainty-aware reinforcement

learning for collision avoidance. arXiv preprint arXiv:1702.01182 (2017).

88. Lillicrap, T. P. et al. Continuous control with deep reinforcement learning. CoRR abs/1509.02971
(2015).

89. Fortunato, M. et al. Noisy networks for exploration. arXiv preprint arXiv:1706.10295 (2017).

90. Nguyen, A., Yosinski, J. & Clune, J. Deep neural networks are easily fooled: High con-

fidence predictions for unrecognizable images in Proceedings of the IEEE conference on

computer vision and pattern recognition (2015), 427–436.

91. Szegedy, C. et al. Intriguing properties of neural networks. ArXiv e-prints abs/1312.6199
(2013).

83

https://ojs.aaai.org/index.php/AAAI/article/view/3876
https://ojs.aaai.org/index.php/AAAI/article/view/3876

92. Garriga Alonso, A. Solving Montezuma’s Revenge with Planning and Reinforcement Learn-

ing 2017.

93. Dann, M., Zambetta, F. & Thangarajah, J. Deriving Subgoals Autonomously to Accelerate

Learning in Sparse Reward Domains in Proceedings of the AAAI Conference on Artificial

Intelligence 33 (2019), 881–889.

94. Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W. & Abbeel, P. Overcoming explo-

ration in reinforcement learning with demonstrations in 2018 IEEE International Confer-

ence on Robotics and Automation (ICRA) (2018), 6292–6299.

95. Kraft, D. et al. Development of object and grasping knowledge by robot exploration. IEEE

Transactions on Autonomous Mental Development 2, 368–383 (2010).

96. Mouret, J.-B. & Clune, J. Illuminating search spaces by mapping elites. arXiv preprint

arXiv:1504.04909 (2015).

97. Lehman, J. & Stanley, K. O. Evolving a diversity of virtual creatures through novelty search

and local competition in GECCO ’11: Proceedings of the 13th annual conference on Ge-

netic and evolutionary computation (2011), 211–218.

98. Pugh, J. K., Soros, L. B. & Stanley, K. O. Quality Diversity: A New Frontier for Evolution-

ary Computation. Front. Robotics and AI 3. ISSN: 2296-9144 (2016).

99. Browne, C. et al. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on

Computational Intelligence and AI in Games 4, 1–43 (2012).

100. Kocsis, L., Szepesvári, C. & Willemson, J. Improved monte-carlo search. Univ. Tartu, Es-

tonia, Tech. Rep 1 (2006).

101. Sutton, R. S. in Machine learning proceedings 1990 216–224 (Elsevier, 1990).

102. Lin, L.-J. Self-improving reactive agents based on reinforcement learning, planning and

teaching. Machine learning 8, 293–321 (1992).

103. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O. & Clune, J. Go-explore: a new approach

for hard-exploration problems. arXiv preprint arXiv:1901.10995 (2019).

104. O’Donoghue, B., Munos, R., Kavukcuoglu, K. & Mnih, V. Combining policy gradient and

Q-learning. arXiv preprint arXiv:1611.01626 (2016).

105. Williams, R. J. & Peng, J. An efficient gradient-based algorithm for on-line training of

recurrent network trajectories. Neural computation 2, 490–501 (1990).

84

	The Go-Explore family of algorithms
	Learning Atari with state restoration
	A hard-exploration robotics environment
	Policy-based Go-Explore
	Conclusion
	State of the art on Atari.
	Downscaling on Atari.
	Domain knowledge representations.
	Exploration phase.
	The backward algorithm.
	Evaluation.
	Hyperparameters.
	Policy-based Go-Explore.
	Robotics environment.
	Data availability.
	Code availability.

	Supplementary Information
	Algorithms
	Prior work on Montezuma's Revenge
	Ablations
	Exploration phase without action repetition
	Exploration phase without dynamic representations
	Downscaling distribution minimum means
	Downscaling target proportion
	Downscaling sampling rate
	Domain-agnostic selection probabilities in Montezuma's Revenge
	Robustification without imitation learning loss
	Policy-based Go-Explore without imitation learning loss
	Policy-based Go-Explore without a cell trajectory
	Policy-based Go-Explore final-cell reward

	Detachment and derailment
	Detachment
	Derailment

	Exploration in Atari
	Generality of downscaling
	Derailment in robotics
	Go-Explore and Quality-Diversity
	Go-Explore, Planning, and Model-based RL
	Go-Explore and Stochasticity
	Policy-based Go-Explore and Stochasticity
	Comparing Policy-based Go-Explore and DTSIL
	No-ops and sticky actions
	PPO and SIL
	Backward algorithm details
	Multiple demonstrations
	Reward scaling

	Score tracking in the exploration phase
	Robustification scores analysis
	Comparing Go-Explore and Agent57
	ALE issues
	Infrastructure

